首页|多重非共价构象锁与π桥工程相结合用于开发Y系列受体

多重非共价构象锁与π桥工程相结合用于开发Y系列受体

扫码查看
非共价构象锁(NCLs)策略被广泛用于构建高性能有机半导体.从分子层面深入探索NCLs对有机光电受体材料和界面的影响,有助于开发高性能光电材料.本文提出了通过整合NCLs和π桥的策略,开发了三种新型Y系列受体(YO、YS、YSe)来增强分子性能,并揭示了NCLs在有机光电受体材料中的作用机制.通过分析,我们首次发现,在适当的位置引入π桥不仅可在骨架内形成多重NCLs,也可与翼链形成NCLs,进一步增强受体的平面性和刚性,从而有助于增强光吸收和减少能量损失.此外,除电荷转移方向改善外,新体系电荷转移态的比例分别增加了8%、20%和36%,助力界面电荷分离.本工作通过π桥工程引入多重NCL,改善受体材料光电性能和界面特性,有望提高有机光伏器件的光电转换效率.
Multiple noncovalent conformational locks combined with π-bridge engineering as high-performance Y-series acceptors for organic photovoltaics
Noncovalent conformational lock(NCL)stra-tegies are widely employed to construct high-performance organic semiconductors.The systematic exploration of the influence of NCLs on the acceptors and interfaces from the atomic scale can help to achieve high-performance optoelec-tronic materials and devices.Here,we present a strategy in-tegrating NCLs and π-bridge to design three novel acceptors(YO,YS,YSe)to enhance molecular properties and uncover the underlying mechanism of NCLs.The photoelectric prop-erties of acceptors and donor(D)/acceptor interfaces are thoroughly explored by first-principles calculations.We find for the first time that introducing π-bridge at the appropriate position not only forms multiple NCLs within the backbone but also forms NCLs with the wing chain,further enhancing acceptors'planarity and rigidity.For acceptors,NCLs con-tribute to stronger light harvesting and reduced energy losses.Except for the charge-transfer(CT)directions,the amounts of interfacial CT states of D/YO,D/YS,and D/YSe increase by 8%,20%,and 36%,rspectively.Therefore,introducing multi-ple NCLs by n-bridge engineering into the benchmark accep-tors is a possible avenue toward high-performce organic photovoltaic.Overall,our findings underscore that the in-corporation of multiple NCLs through π-bridges can sub-stantially enhance power conversion efficiencies through improved photoelectric properties,and interfacial character-istics.

noncovalent conformational locksfirst-principles calculationorganic photovoltaics(OPVs)interfacial charge transfer

杨杰、李全松、李泽生

展开 >

School of Chemistry and Chemical Engineering,Beijing Institute of Technology,Beijing 100081,China

noncovalent conformational locks first-principles calculation organic photovoltaics(OPVs) interfacial charge transfer

National Natural Science Foundation of ChinaBeijing Key Laboratory for Chemical Power Source and Green Catalysis

221730082013CX02031

2024

中国科学:材料科学(英文)

中国科学:材料科学(英文)

CSTPCD
ISSN:
年,卷(期):2024.67(5)