首页|平衡三阳离子钙钛矿中带隙和电荷传输以实现高效的室内光伏

平衡三阳离子钙钛矿中带隙和电荷传输以实现高效的室内光伏

扫码查看
带隙可调的钙钛矿材料在室内光伏(IPVs)领域具有广阔的应用前景.然而,与室内光相匹配的宽带隙钙钛矿通常导电性较差,缺陷密度较高,往往不利于电荷提取和传输,限制了其光伏特性.在这里,我们通过调节Br/I比,探究了不同带隙三阳离子钙钛矿的IPVs特性.研究表明,宽带隙钙钛矿能充分利用室内光,在低照度下能获得较高的开路电压,但高Br/I比的钙钛矿具有较高的缺陷密度,不利于获得高短路电流密度和填充因子.通过进一步研究不同带隙钙钛矿的结晶动力学、缺陷密度和电荷传输特性,我们发现主流观念中高效IPVs着重考虑室内光伏材料的带隙是不全面的,我们证明了通过适当降低宽带隙晶体中的Br含量可以获得室内光伏特性更优异的器件.也就是说,室内光伏晶体材料的制备需要兼顾带隙和电荷传输特性.在此工作中,平衡带隙和电荷传输的器件(Br 0.23,1.62 eV)在1035 lux的LED灯照射下取得了40.71%的最佳效率.我们的研究为高效室内光伏的设计提供了新思路.
Balancing bandgap and charge transport in triple-cation perovskite for efficient indoor photovoltaics
The tunable bandgaps of metal halide per-ovskites lead to their promising application in indoor photo-voltaics(IPVs).However,perovskites with wide bandgaps suitable for indoor light typically have lower conductivity and higher defect density,which leads to inefficient charge trans-port and extraction,limiting their photovoltaic performances.Herein,we investigated the IPV characteristics of triple-cation perovskites with varying bandgaps by tailoring the Br/I ratios.We found that wide-bandgap perovskites could effectively utilize indoor light and achieve high open circuit voltage va-lues under low illumination conditions.However,increasing the Br/I ratios results in higher defect density,leading to de-creased short-circuit current density and fill factor.We thor-oughly studied the crystallization dynamics,defect density,and charge transfer properties of triple-cation perovskites with varying bandgaps.We found the prevailing concept that efficient IPVs taking the bandgap of IPV materials into special consideration was not comprehensive.We demonstrate that IPV devices with superior IPV properties can be developed by appropriately reducing the Br contents in wide-bandgap crystals.In other words,the preparation of IPV crystal ma-terials should consider both the bandgap and charge transport characteristics.In this work,we obtained devices with the optimal efficiency of 40.71%under 1035 lux LED illumination by achieving a balance between bandgap and charge transfer(Br 0.23,1.62 eV).This research provides valuable insights for the design of efficient IPVs.

perovskite solar cellbandgapcharge transporttrapsindoor photovoltaic

唐颖、张祖宏、刘海瑞、马哈茂德·侯赛因·阿尔达马西、穆罕默德·比拉尔、杨枫、杨纪恩、秦朝朝、杨勇刚、李哲、刘玉芳、李萌

展开 >

School of Physics,Henan Normal University,Xinxiang 453007,China

Key Lab for Special Functional Materials of Ministry of Education,National & Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology,School of Nanoscience and Materials Engineering,Collaborative Innovation Center of Nano Functional Materials and Applications,Henan University,Kaifeng 475004,China

School of Materials Science and Engineering Henan Normal University,Xinxiang 453007,China

Helmholtz-Zentrum Berlin für Materialien und Energie GmbH,Hahn-Meitner-Platz 1,Berlin 14109,Germany

School of Engineering and Materials Science(SEMS),Queen Mary University of London,London E1 4NS,UK

Institute of Physics,Henan Academy of Sciences,Zhengzhou 450000,China

展开 >

perovskite solar cell bandgap charge transport traps indoor photovoltaic

Zhongyuan Scholar of Henan ProvinceNational Natural Science Foundation of ChinaAXA research fundHenan Province College Youth Backbone Teacher Project

224000510007119741032020GGJS062

2024

中国科学:材料科学(英文)

中国科学:材料科学(英文)

CSTPCD
ISSN:
年,卷(期):2024.67(8)