首页|Cu/Ni多位点串联催化促进氧还原反应

Cu/Ni多位点串联催化促进氧还原反应

扫码查看
金属-氮-碳(M-N-C)材料的特殊电子性质和较高的原子利用率,在氧还原反应(ORR)中得到广泛研究.然而,在氧还原过程中,形成过氧化氢(H2O2)的双电子途径是无法避免的.本文设计通过将Cu纳米粒子(NPs)引入到中空介孔碳球(HMCS)中来降低M-N-C材料的双电子选择性,增强其ORR性能.电化学测试证实了Cu NPs对 ORR性能的改善.相对于可逆氢电极,Cu/Ni HMCS具有0.82 V的半波电位和5.5 mA cm-2的极限电流密度,与商业Pt/C相当.此外,将Cu/Ni-HMCS应用在锌-空气电池中,表现出161 mW cm-2的高功率密度和长期充放电稳定性(在5 mA cm-2条件下持续50小时).理论计算提出了Cu/Ni多位点催化串联催化途径,即O2在Ni-N4和fCu-N4位点还原生成的H2O2迁移到Cu(111)晶面,在Cu(111)面进一步还原为H2O.本研究展示了ORR双金属多位点串联催化途径,为燃料电池电催化剂的设计提供了新思路.
Tandem catalysis of Cu/Ni multi-sites promotes oxygen reduction reaction
The special electronic characteristics and high atom usage efficiency of metal-nitrogen-carbon(M-N-C)materials have made them extremely attractive for oxygen reduction reactions(ORRs).However,it is inevitable that hydrogen peroxide(H2O2)will be formed via the two-electron pathway in ORRs.Herein,the Cu nanoparticles(NPs)have been encapsulated into Ni doped hollow mesoporous carbon spheres(Ni-HMCS)to reduce the generation of H2O2 in ORR.Electrochemical tests confirm that the introduction of Cu NPs improves the ORR performance greatly.The obtained Cu/Ni-HMCS exhibits a half-wave potential of 0.82 V vs.reversible hydrogen electrode and a limited current density of 5.5 mA cm 2,which is comparable with the commercial Pt/C.Moreover,Cu/Ni-HMCS has been used in Zn-air battery,de-monstratinga high power density of 161 mW cm-2 and a long-term recharge capability(50 h at 5 mA cm-2).The theoretical calculation proposes a tandem catalysis pathway for Cu/Ni multi-sites catalysis,that is,H2O2 released from the Ni-N4 and Cu-N4 sites migrates to the Cu(111)face,on which the captive H2O2 is further reduced to H2O.This work demonstrates an interesting tandem catalytic pathway of dual-metal multi-sites for ORR,which provides an insight into the development of effective fuel cell electrocatalysts.

oxygen reduction reactiontandem catalysis pathwaydual-metal multi-sitesCu nanoparticles

冯彬彬、常可可、熊晚枫、司端惠、高水英、李红芳、曹荣

展开 >

College of Chemistry and Materials Science,Fujian Normal University,Fuzhou 350007,China

State Key Laboratory of Structural Chemistry,Fujian Institute of Research on the Structure of Matter,Chinese Academy of Sciences,Fuzhou 350002,China

University of Chinese Academy of Sciences,Beijing 100049,China

Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China,Fuzhou 350108,China

展开 >

oxygen reduction reaction tandem catalysis pathway dual-metal multi-sites Cu nanoparticles

National Key Research and Development Program of ChinaNational Key Research and Development Program of ChinaNational Natural Science Foundation of ChinaNational Natural Science Foundation of ChinaNational Natural Science Foundation of ChinaNational Natural Science Foundation of ChinaFujian Science & Technology Innovation Laboratory for Optoelectronic Information of ChinaOpen Research Fund of CNMGE Platform & NSCC-TJOpen Science Promotion Plan 2023 of CSTCloud

2021YFA15015002018YFA0704502221712652220128622033008222201020052021ZZ103

2024

中国科学:材料科学(英文)

中国科学:材料科学(英文)

CSTPCD
ISSN:
年,卷(期):2024.67(9)