首页|一种基于BP神经网络的属性重要性计算方法

一种基于BP神经网络的属性重要性计算方法

扫码查看
人工神经网络学习作为机器学习的重要方式,在人工智能、模式识别、图像处理等领域已成功应用;BP网络作为神经网络学习的精华,它利用误差反传的方式不断修正权重以达到最佳拟合.多属性决策问题是决策理论研究领域的热点,当研究的问题涉及多个属性时,需要分析各属性的重要程度,即属性的权重.针对多分类输出结果的多输入属性相关性和重要性问题,提出了利用BP神经网络计算复杂输入属性的重要性方法;并对神经网络的节点数量、网络层数、学习策略、学习因子等进行研究,建立了适合属性重要性计算的BP神经网络模型;以烟台大学学生评教数据作为具体实例,利用k-fold方法验证其可行性和有效性.
A computing method for attribute importance based on BP neural network
As an important method for machine learning,artificial neural network has been applied successfully in artificial intelligence,pattern recognition,image processing and other fields.As the essence of neural network learning,BP network utilizes the error back propagation to correct weights continually in order to achieve the best-fit.The multi-attribute decision-making problem is a hotspot in decision theory.When involving multiple attributes,it needs to analyze the importance degrees for different attributes,i.e.,weights of attributes.According to the correlation and importance problems of multiple input attributes for multi-classification output results,an importance method for calculating complex input attributes based on BP neural network was proposed.In addition,the BP neural network model for calculating the importance degrees of attributes was established through researching the number of nodes,the layers of network,learning strategies and learning factors in neural networks.The data of teaching evaluation of Yantai University is utilized to verify the feasibility and validity of the proposed method through applying k-fold approach.

BP neural networkimportance of attributesmulti-classification outputteaching evaluation

潘庆先、董红斌、韩启龙、王莹洁、丁蕊

展开 >

哈尔滨工程大学计算机科学与技术学院,黑龙江哈尔滨150001

烟台大学计算机与控制工程学院,山东烟台264005

BP神经网络 属性重要性 多分类输出 学生评教

国家自然科学基金国家自然科学基金国家自然科学基金

614720956150214061572418

2017

中国科学技术大学学报
中国科学技术大学

中国科学技术大学学报

CSTPCDCSCD北大核心
影响因子:0.421
ISSN:0253-2778
年,卷(期):2017.47(1)
  • 22
  • 7