首页|LightAD:基于自适应采样的自动去偏框架加速方法

LightAD:基于自适应采样的自动去偏框架加速方法

扫码查看
在推荐系统中,由于数据是从用户行为中收集而来而不是通过合理的实验得到,因此偏差问题是普遍存在的.自动去偏框架(AutoDebias)通过采用元学习寻找适当地去偏置配置(即伪标签和置信权重),已被证明是应对各种偏差的一种通用和有效的解决方案.然而,为每个用户-物品对设置伪标签和权重是一个极度耗时的过程.因此,自动去偏框架面临巨大的计算成本,这使其在实际应用中的适用性较差.虽然使用带有均匀采样器的随机梯度下降可以加速模型训练,但这会显著恶化模型的收敛性和稳定性.为了解决这个问题,我们提出了 LightAutoDebias(简称LightAD),它为自动去偏框架配备了一种专门的权重采样策略.该采样器可以自适应地和动态地获取信息量更大的训练样本,这带来的收敛性和稳定性比标准的均匀采样器更好.在三个基准数据集上的广泛实验证明,我们的LightAD可以加速自动去偏框架的训练达几个数量级,同时保持几乎相同的精度.
LightAD:accelerating AutoDebias with adaptive sampling
In recommendation systems,bias is ubiquitous because the data are collected from user behaviors rather than from reasonable experiments.AutoDebias,which resorts to metalearning to find appropriate debiasing configurations,i.e.,pseudolabels and confidence weights for all user-item pairs,has been demonstrated to be a generic and effective solution for tackling various biases.Nevertheless,setting pseudolabels and weights for every user-item pair can be a time-consuming process.Therefore,AutoDebias suffers from an enormous computational cost,making it less applicable to real cases.Although stochastic gradient descent with a uniform sampler can be applied to accelerate training,this approach sig-nificantly deteriorates model convergence and stability.To overcome this problem,we propose LightAutoDebias(short as LightAD),which equips AutoDebias with a specialized importance sampling strategy.The sampler can adaptively and dy-namically draw informative training instances,which results in better convergence and stability than does the standard uni-form sampler.Several experiments on three benchmark datasets validate that our LightAD accelerates AutoDebias by sev-eral magnitudes while maintaining almost equal accuracy.

recommendationbiasdebiassampling

邱阳、董汉德、陈佳伟、何向南

展开 >

中国科学技术大学信息科学技术学院,安徽合肥 230027

推荐系统 偏差 去偏 采样

中央高校基本科研业务费专项

WK2100000019

2024

中国科学技术大学学报
中国科学技术大学

中国科学技术大学学报

CSTPCD北大核心
影响因子:0.421
ISSN:0253-2778
年,卷(期):2024.54(4)