首页|基于不确定度的多智能体信用分配方法

基于不确定度的多智能体信用分配方法

扫码查看
近年来,部分可观测条件下多智能体协同受到广泛关注。中心化训练分布式执行作为处理这类任务的通用范式面临信用分配这一核心问题。值分解是该范式中的代表性方法,通过混合网络将联合状态动作值函数分解为多个局部观察动作值函数以实现信用分配,在很多问题中表现很好。然而这些方法维持对混合网络参数的单一点估计,因缺乏不确定度表示而难以有效应对环境中的随机因素导致只能收敛到次优策略。为缓解这一问题,对混合网络进行贝叶斯分析,提出一种基于不确定度的多智能体信用分配方法,通过显式地量化参数的不确定度来指导信用分配。考虑到智能体之间复杂的交互,利用贝叶斯超网络隐式地建模参数任意复杂的后验分布,以避免先验地指定分布类型而陷于局部最优解。在星际争霸微操环境中的多个地图上与代表性算法的性能进行对比与分析,验证了算法的有效性。
Uncertainty-based credit assignment for cooperative multi-agent reinforcement learning
In recent years,multi-agent cooperation under partially observable conditions has attracted extensive attention.As a general paradigm to deal with such tasks,centralized training with decentralized execution faces the core problem of credit assignment.Value decomposition is a representative method within this paradigm.Through the mixing network,the joint state action-value function is decomposed into multiple local observation action-value functions to realize credit assignment,which performs well in many problems.However,the single point estimation of the mixing network parameters maintained by these methods lacks the representation of uncertainty and is thus difficult to effectively deal with the random factors in the environment,resulting in convergence to the suboptimal strategy.To alleviate this problem,this paper performs Bayesian analysis on the mixing network and proposes a method based on uncertainty for multi-agent credit assignment,which guides the credit assignment by explicitly quantifying the uncertainty of parameters.Considering the complex interactions among agents,this paper utilizes the Bayesian hypernetwork to implicitly model the arbitrary complex posterior distribution of the mixing network parameters,to avoid falling into the local optima by specifying the distribution type a priori.This paper compares and analyzes the performance of representative algorithms on multiple maps in StarCraft multi-agent challenge(SMAC)and verifies the effectiveness of the proposed algorithm.

multi-agent cooperationdeep reinforcement learningcredit assignmentBayesian hypernetwork

杨光开、陈皓、张茗奕、尹奇跃、黄凯奇

展开 >

中国科学院自动化研究所智能系统与工程研究中心,北京 100190

中国科学院大学人工智能学院,北京 100049

中国科学院脑科学与智能技术卓越创新中心,上海 200031

多智能体协同 深度强化学习 信用分配 贝叶斯超网络

国家自然科学基金北京市科技创新计划中国科学院先导科技专项中国科学院青年创新促进会项目资助

61876181Z19110000119043QYZDB-SSWJSC006

2024

中国科学院大学学报
中国科学院大学

中国科学院大学学报

CSTPCD北大核心
影响因子:0.614
ISSN:2095-6134
年,卷(期):2024.41(2)
  • 41