首页|基于密度与局部统计的单光子点云去噪方法

基于密度与局部统计的单光子点云去噪方法

扫码查看
针对北京遥测技术研究所自主研发的64通道机载单光子激光雷达,提出一种基于密度与局部统计的二维剖面点云去噪方法:在确定信号点云的高程区间后,先使用基于密度的改进空间聚类算法粗去噪,然后使用基于局部统计的统计移除离群点算法精去噪,获取信号点云。实验结果表明,本方法可适用于多种地物类型点云,高程均方根误差为0。27 m,准确率90。78%,精度高于常规点云去噪算法,满足国产机载单光子激光雷达获取高精度地表三维轮廓的技术需求。
Single photon point cloud denoising method based on density and local statistics
In this paper,aiming at a 64-channel airborne single-photon LiDAR system developed by Beijing Research Institute of Telemetry,a two-dimensional profile point cloud denoising method based on density and local statistics was proposed.First,the elevation range of the point cloud was determined;then a modified DBSCAN algorithm was utilized for coarse denoising;finally,the statistical outlier removal algorithm was adapted for fine denoising and the valid signal point cloud was obtained.The experimental result shows that the method proposed in this paper can adapt to different surface types,the root mean square error of elevation is about 0.27 m,and the accuracy is 90.87%,which is better than the conventional point cloud denoising methods,and can meet the technical requirements of domestic airborne single-photon LiDAR to obtain high-precision three-dimensional surface contours.

single photon LiDARpoint cloud denoisinglocal statisticsdensity clustering

潘超、李凉海、曹海翊、赵一鸣、袁逸飞、韩晓爽

展开 >

北京遥测技术研究所,北京 100076

中国空间技术研究院遥感卫星总体部,北京 100094

单光子三维成像激光雷达 点云去噪 局部统计 密度聚类

中国航天科技集团自主研发项目"十四五"民用航天预研项目

D040107

2024

中国科学院大学学报
中国科学院大学

中国科学院大学学报

CSTPCD北大核心
影响因子:0.614
ISSN:2095-6134
年,卷(期):2024.41(2)
  • 15