首页|带消极动量的自适应步长随机方差缩减方法

带消极动量的自适应步长随机方差缩减方法

扫码查看
近年来,随机方差缩减类方法在解决大规模机器学习问题中取得很大成功,自适应步长技术的引入减轻了该类方法的调参负担。针对自适应步长的方差缩减算法SVRG-BB,指出其算法设计带来了"进展-自适应步长有效性"的权衡问题。因此引入Katyusha动量以更好地处理该权衡问题,并且在强凸假设下证明由此得到的SVRG-BB-Katyusha算法的线性收敛性质。之后基于"贪婪"思想,提出稀疏地使用Katyusha动量的SVRG-BB-Katyusha-SPARSE算法。在公开数据集上的数值实验结果表明,提出的2个改进算法较SVRG-BB有较稳定的优势,即在达到一定外循环数时优化间隙有若干个数量级的减小。
An adaptive variance reduction method with negative momentum
Stochastic variance reduction methods have been successful in solving large scale machine learning problems,and researchers cooperate them with adaptive stepsize schemes to further alleviate the burden of parameter-tuning.In this article,we propose that there exists a trade-off between progress and effectiveness of adaptive stepsize arising in the SVRG-BB algorithm.To enhance the practical performance of SVRG-BB,we introduce the Katyusha momentum to handle the aforementioned trade-off.The linear convergence rate of the resulting SVRG-BB-Katyusha algorithm is proven under strong convexity condition.Moreover,we propose SVRG-BB-Katyusha-SPARSE algorithm which uses Katyusha momentum sparsely in the inner iterations.Numerical experiments are given to illustrate that the proposed algorithms have promising advantages over SVRG-BB,in the sense that the optimality gaps of the proposed algorithms are smaller than the optimality gap of SVRG-BB by orders of magnitude.

adaptive stepsize schemestochastic variance reduction methodsBarzilai-Borwein methodKatyusha momentum

刘海、郭田德、韩丛英

展开 >

中国科学院大学数学科学学院,北京 100049

自适应步长机制 随机方差缩减类方法 Barzilai-Borwein方法 Katyusha动量

国家重点研发计划国家自然科学基金国家自然科学基金中央高校基本科研业务费专项

2021YFA100040311991022U23B2012E1E40104X2

2024

中国科学院大学学报
中国科学院大学

中国科学院大学学报

CSTPCD北大核心
影响因子:0.614
ISSN:2095-6134
年,卷(期):2024.41(5)