首页|基于MFF-Deeplabv3+网络的高分辨率遥感影像建筑物提取方法

基于MFF-Deeplabv3+网络的高分辨率遥感影像建筑物提取方法

扫码查看
为提升高分辨率遥感影像中建筑物提取的精度,提出一种基于MFF-Deeplabv3+(multiscale feature fusion-Deeplabv3+)网络的高分辨率遥感影像建筑物提取方法。首先,设计多尺度特征增强模块,使网络能够捕获更多尺度的上下文信息;然后,设计特征融合模块,有效融合深层特征与浅层特征,减少细节信息的丢失;最后,引入注意力机制模块,自适应地选择准确特征。在Inria建筑物数据集的对比实验中,MFF-Deeplabv3+在PA、MPA、FWIoU、MIoU指标中取得最高精度,分别为95。75%、91。22%、92。12%和85。01%,同时在WHU建筑物数据集的泛化实验中取得不错的结果。结果表明,本方法在高分辨率遥感影像中提取建筑物信息精度较高,且具有较好的泛化性。
Building extraction method based on MFF-Deeplab v3+network for high-resolution remote sensing images
Automatic extraction of building information from high-resolution remote sensing images is of great significance in the fields of environmental monitoring,earthquake mitigation,and land use,making it a research hotspot in the field of high-resolution remote sensing applications.In order to improve the accuracy of building extraction from high-resolution remote sensing images,a building extraction method based on MFF-Deeplabv3+(multiscale feature fusion-Deeplabv3+)network for high-resolution remote sensing images is proposed in this paper.First,the multi-scale feature enhancement module is designed to enable the network to capture more scale context information;then,the feature fusion module is designed to effectively fuse deep features with shallow features to reduce the loss of detail information;finally,the attention mechanism module is introduced to select accurate features adaptively.In the comparison experiments of the Inria building dataset,MFF-Deeplabv3+achieved the highest accuracy in PA,MPA,FWIoU,and MIoU metrics with 95.75%,91.22%,92.12%,and 85.01%,respectively,while the generalization experiments of the WHU building dataset achieved good results.The results show that this method extracts building information from high-resolution remote sensing images with high accuracy and strong generalization.

building extractiondeep learningattention mechanismmulti-scale feature enhancementhigh-resolution remote sensing images

陈经纬、李宇、陈俊、张洪群

展开 >

中国科学院空天信息创新研究院,北京 100094

中国科学院大学电子电气与通信工程学院,北京 100049

中国科学院计算机网络信息中心,北京 100083

中国科学院大学计算机科学与技术学院,北京 100049

展开 >

建筑物提取 深度学习 注意力机制 多尺度特征增强 高分辨率遥感影像

国家自然科学基金

61501460

2024

中国科学院大学学报
中国科学院大学

中国科学院大学学报

CSTPCD北大核心
影响因子:0.614
ISSN:2095-6134
年,卷(期):2024.41(5)