首页|融合多源数据的稀土矿区滑坡危险性定量识别方法

融合多源数据的稀土矿区滑坡危险性定量识别方法

扫码查看
为了提前对离子吸附型稀土矿区潜在的滑坡危险性进行识别,本研究以岭北矿区为例,提出了融合多源数据的稀土矿区滑坡危险性定量识别方法.首先基于时序哨兵一号(Sentinel-1A)数据,采用小基线集(Small Baseline Subset InSAR,SBAS-InSAR)技术获取研究区地表形变;再以数字高程模型(DEM)、Landsat 8陆地成像仪(OLI)等多源遥感数据为辅,提取潜在滑坡点,构建矿区滑坡危险性信息量模型;最后再结合同时期高空间分辨率遥感影像进行潜在滑坡危险性识别.结果表明:矿区整体地表年平均形变速率在-20.28~20.08 mm/a,共提取183个潜在滑坡点;构建的稀土矿区滑坡灾害危险性信息量模型是可行的,总结了研究区诱发滑坡的最佳信息量组合方式;对甲子背和大坑2个典型矿点进行具体分析,发现稀土开采活动会加速滑坡的产生,开采之后即使进行复垦,也容易诱发滑坡.
Quantitative identification method of landslide hazard in rare earth mining area based on multi-source data
To identify the potential landslide hazard of ion-adsorption rare earth mining areas in advance,the Lingbei mining area is used as a case study,and a quantitative landslide hazard i-dentification method for rare earth mining areas based on multi-source data was proposed.Based on the Sentinel-1A time series data,the study employed the Small Baseline Subset In-SAR(SBAS-InSAR)technology to identify surface deformation in the study area.Supplemen-ted by multi-source remote sensing data,such as the Digital Elevation Model(DEM)and Landsat 8 Operational Land Imager(OLI),potential landslide points were extracted,and an information value model of landslide hazard in the mining area was constructed.Finally,the potential landslide hazard was identified by combining high-resolution remote sensing images from the same period.The results show that the mining area's average annual surface deforma-tion rate is-20.28~20.08 mm/a and 183 potential landslide points are extracted.The infor-mation value model of landslide hazard in the mining area is feasible and summarizes the opti-mal combination mode of information value for inducing landslides in the study area.Having analyzed the two typical mining sites of Jiazibei and Dakeng,we can find that rare earth mining activities contribute to an increased likelihood of landslides.In addition,the susceptibility to induced landslides remains significantly high,even with post-mining efforts to restore vegeta-tion.

landslide identificationrare earth mining areamulti-source dataSBAS-InSAR technologyinformation value model

戴妹谊、李恒凯、龙北平、王秀丽

展开 >

江西理工大学土木与测绘工程学院,江西赣州 341000

江西省煤田地质局测绘大队,江西南昌 330001

江西理工大学经济管理学院,江西赣州 341000

滑坡识别 稀土矿区 多源数据 SBAS-InSAR技术 信息量模型

国家自然科学基金项目

42161057

2024

中国矿业大学学报
中国矿业大学

中国矿业大学学报

CSTPCD北大核心
影响因子:1.83
ISSN:1000-1964
年,卷(期):2024.53(1)
  • 25