首页|基于郊狼优化算法的扇区管制复杂性聚类与仿真验证

基于郊狼优化算法的扇区管制复杂性聚类与仿真验证

Cluster analysis and simulation verification of sector control complexity based on coyote optimization algorithm

扫码查看
为提高科学评估扇区管制复杂性的能力,本文提出基于郊狼优化算法(COA,coyote optimization algorithm)的扇区管制复杂性聚类算法.首先,引入逐维变异改进策略来改进郊狼优化聚类算法,解决其易陷入局部最优解的问题.其次,以中国西北地区区域管制扇区为研究对象,采用改进郊狼优化聚类算法(ICOCA,improved coyote optimization clustering algorithm)对扇区管制复杂性指标进行聚类分析.最后,对扇区聚类结果进行仿真验证,结果证明了所提算法在扇区管制复杂性分类方面的有效性和可靠性,可为后续的空域管理提供有效的数据决策.
To improve the ability of scientifically assessing the sector control complexity,a clustering algorithm of sector con-trol complexity based on the coyote optimization algorithm(COA)is proposed in this paper.Firstly,a per-dimen-sion mutation improvement strategy is introduced to propose the improved coyote optimization clustering algorithm(ICOCA),which can solve the problem of being easily trapped in local optimal solutions.Secondly,taking the re-gional control sectors in the Northwest China as the research object,the ICOCA is applied to conduct cluster analy-sis for the index of sector control complexity.Finally,the results of sector clustering are simulated and verified,which can prove the effectiveness and reliability of the proposed algorithm in the classification of sector control complexity,thus it can provide effective data decisions for subsequent airspace management.

air traffic managementcontrol complexitycluster analysisimproved coyote optimization clustering algo-rithm(ICOCA)

李振猛

展开 >

中国民用航空西北地区空中交通管理局区域管制中心,西安 710003

空中交通管理 管制复杂性 聚类分析 改进郊狼优化聚类算法(ICOCA)

2024

中国民航大学学报
中国民航大学

中国民航大学学报

影响因子:0.363
ISSN:1674-5590
年,卷(期):2024.42(4)