首页|基于注意力LSTM的齿轮剩余使用寿命预测

基于注意力LSTM的齿轮剩余使用寿命预测

Prediction of gear remaining useful life based on attention LSTM

扫码查看
针对旋转机械设备中齿轮剩余使用寿命(RUL,remaining useful life)的预测问题,本文利用长短期记忆(LSTM,long short-term memory)网络在处理时间序列数据方面的独特优势,提出一种将注意力机制和LSTM融合的齿轮RUL预测算法.首先,从齿轮振动信号中分解出最能反映其健康状况的4种时域特征(均方根值、峭度、方差和裕度指标)作为RUL预测网络的输入;其次,以提升RUL预测结果的精度为目标,把LSTM和注意力机制相结合,设计了一种新型的RUL预测网络;最后,使用实验室齿轮全寿命加速疲劳实验台生成的真实数据进行了模型验证,结果表明,本文所提出的注意力LSTM算法在进行齿轮RUL预测时具有较高的预测精度.
Aiming at the problem of predicting the gear remaining useful life (RUL) in rotating machinery,using the unique advantages of long short-term memory (LSTM) network in processing time series data,a gear remaining useful life prediction algorithm combining attention mechanism and LSTM is proposed in this paper. Firstly,four kinds of time domain features (root mean square value,kurtosis,variance,and margin index ) that can better reflect the health status are decomposed from gear vibration signal and taken as inputs to the RUL prediction network. Secondly,with the goal of improving the accuracy of RUL prediction results,a novel RUL prediction network is designed by combining LSTM and attention mechanism. Finally,the model was validated using real data generat-ed from gear full-life accelerated fatigue test bench of the laboratory. The results show that the attention LSTM algorithm proposed in this paper has high prediction accuracy in predicting the gear RUL.

gearprediction of remaining useful life (RUL)long short-term memory (LSTM) networkattention mechanismtime domain feature

郭润夏、倪志高

展开 >

中国民航大学电子信息与自动化学院,天津 300300

齿轮 剩余使用寿命(RUL)预测 长短期记忆(LSTM)网络 注意力机制 时域特征

2024

中国民航大学学报
中国民航大学

中国民航大学学报

影响因子:0.363
ISSN:1674-5590
年,卷(期):2024.42(6)