首页|基于EMD-GRU的港口堆场煤炭含水率智能预测与实验研究

基于EMD-GRU的港口堆场煤炭含水率智能预测与实验研究

扫码查看
针对煤炭港口堆场洒水抑尘需求,提出了基于EMD-GRU的煤炭含水率预测模型并进行了实验验证.通过建立煤炭堆场含水率预测模型,利用实时数据驱动预测煤炭堆垛含水率变化,根据气象数据与含水率变化情况判断煤炭堆垛未来起尘情况并制定相应的洒水策略.实验结果表明,EMD-GRU模型的均方根误差、平均绝对误差、平均绝对百分比误差和决定系数分别为 0.768、0.566、9.52%、0.944,与 SVR、DTR、RNN、LSTM、GRU等预测模型相比,EMD-GRU预测模型的各误差值均最低,决定系数为最高,且预测精度与拟合效果最好.
Research on intelligent prediction and experiment of coal moisture content in port yard based on EMD-GRU
Aiming at the demand of watering and dust suppression in coal port yard,a prediction model of coal moisture content based on EMD-GRU was put forward,and experimental verification was carried out.By establishing the prediction model of coal moisture content in the storage yard,using real-time data-driven to predict the change of moisture content in the coal stack,the future dust generation of the coal stack could be determined according to the meteorological data and the change of moisture content,and the corresponding watering strategy was formulated.The experimental results showed that the root mean square error,average absolute error,average absolute percentage error and determination coefficient of the EMD-GRU model proposed in this paper were 0.768,0.566,9.52%and 0.944 respectively.Compared with SVR,DTR,RNN,LSTM,GRU and other prediction models,EMD-GRU prediction model had the lowest error values,the highest determination coefficient,and the best prediction accuracy and fitting effect.

coal moisture contentmeteorological elementsdeep learningEMD-GRUprediction model

李娜、刘强、张淼、张崇进、胡而已、张帆

展开 >

国家能源投资集团神华黄骅港务有限责任公司,河北省沧州市,061000

中国矿业大学<北京)人工智能学院,北京市海淀区,100083

应急管理部信息研究院,北京市朝阳区,100029

煤含水率 气象要素 深度学习 EMD-GRU 预测模型

国能集团研发科研项目

U03462

2024

中国煤炭
煤炭信息研究院

中国煤炭

CSTPCD北大核心
影响因子:0.736
ISSN:1006-530X
年,卷(期):2024.50(5)
  • 16