首页|基于CNN-BiGRU-RF模型的TBM掘进参数预测研究

基于CNN-BiGRU-RF模型的TBM掘进参数预测研究

扫码查看
作为井下巷道掘进的新工法,全断面隧道掘进机(TBM)有显著的经济效益,对TBM的掘进参数进行预测对于确保TBM的掘进效率具有重要意义.对现场获取的TBM数据进行清洗和预处理,利用皮尔逊相关系数法对模型输入特征进行筛选,并构建基于卷积神经网络(CNN)优化的双向门控循环单元(BiGRU)神经网络并通过随机森林(RF)进行集成的TBM掘进参数预测模型,实现对 TBM掘进参数的预测.研究结果表明:选取与总推力和推进速率关联度最密切的刀盘转速、刀盘扭矩和贯入度作为特征参数;构建的CNN-BiGRU-RF模型预测掘进参数对总推力和推进速率的拟合优度R2 均值分别为 0.950和 0.966,均方误差MSE 平均值分别为 0.750 和 0.782,均方根误差RMS E 平均值分别为0.866 和 0.885,平均绝对误差MAE 平均值分别为 1.054 和 1.007,并且回归评价指标MSE、RMS E、MAE 相较于CNN-BiGRU模型,分别降低 2.497、0.966 和 0.386,R2 提升 23.4%,证明CNN-BiGRU-RF模型的预测准确度和泛化性最高.该研究可为实际工程掘进参数预测提供指导,有助于推动TBM在煤矿的推广,保障TBM的施工进度.
Research on the prediction of TBM boring parameters based on CNN-BiGRU-RF model
As a new method of underground tunnel boring,tunnel boring machine(TBM)has significant economic benefits,so the prediction of TBM boring parameters is of great significance to ensure the boring efficiency of TBM.The TBM data obtained in the field were cleaned and preprocessed,the model input features were screened using Pearson correlation coefficient method,and a TBM boring parameter prediction model was integrated by random forest(RF)on the basis of bidirectional gated recurrent unit(BiGRU)neural network optimized by convolutional neural network(CNN)to predict the boring parameters of the TBM.The results showed that the cutter speed,cutter torque and penetration,which were most closely related to the total thrust and propulsion rate,were selected as the feature parameters;the constructed CNN-BiGRU-RF model predicted that the mean value of R2 of the boring parameters to the total thrust and the propulsion rate was 0.950 and 0.966,respectively;the average value of MSE was 0.750 and 0.782,respectively;the average value of RMSE was 0.866 and 0.885,respectively;the average value of MAE was 1.054 and 1.007,respectively;and compared with the CNN-BiGRU model,the value of regression evaluation metrics,MSE,RMSE and MAE,was reduced by 2.497,0.966 and 0.386,respectively,and the R2 was improved by 23.4%,which proved that the CNN-BiGRU-RF model had the highest prediction accuracy and generalization.This study provides guidance for the prediction of boring parameters in practical engineering,which helps the promotion of TBM in coal mines and the construction progress of TBM.

CNN-BiGRU-RF modelTBM boring parametersPearson correlation coefficientconvolutional neural network(CNN)bidirectional gated recurrent unit neural network(BiGRU)random forest(RF)time series predicting

王海宾、王永涛、陈黎涵、侯正涛、刘江、丁自伟

展开 >

山东能源集团西北矿业有限公司,陕西省西安市,710018

西安科技大学能源学院,陕西省西安市,710054

CNN-BiGRU-RF模型 TBM掘进参数 皮尔逊相关系数法 卷积神经网络 双向门控循环单元神经网络 随机森林 时间序列预测

2024

中国煤炭
煤炭信息研究院

中国煤炭

CSTPCD北大核心
影响因子:0.736
ISSN:1006-530X
年,卷(期):2024.50(9)