首页|成分数据视角下我国能源消费结构的定变权组合预测

成分数据视角下我国能源消费结构的定变权组合预测

扫码查看
能源是我国经济社会发展的重要物质基础,有效预测能源消费结构的变动趋势,对我国实现"双碳"目标有着重要的现实意义.然而能源消费结构属于一类具有特殊空间结构的复杂数据类型,其主要特征是各组成部分比例为非负且总和恒定为1.因此将成分数据理论引入到能源消费结构的研究中,旨在充分满足能源消费结构的特殊内部特征,并充分挖掘出其相对信息.分别构建了球坐标变换下各成分的BP神经网络、ARIMA模型和三次指数平滑等单一预测模型;基于成分数据中的Aitchison距离平方和最小化,分别构建了定权和变权的组合预测模型;以平均Aitchison距离值 MSD最小的变权组合模型预测了2024-2030年我国能源消费结构的变化趋势.预测结果表明,我国能源消费结构中短期内将朝着多元化格局发展,清洁能源消费占比将呈现不断增加的趋势,但煤炭等化石资源仍将占据着能源消费的主体地位.
Fixed-variable weight combination prediction of China's energy consumption structure from the perspective of compositional data
Energy is an important material foundation for China's economic and social development,so effectively forecasting the trend of energy consumption structure is of great practical significance for achieving China's carbon peak and carbon neutrality goals.However,the energy consumption structure belongs to a class of complex statistics with a special spatial structure,whose main feature is that the proportion of each component is non negative and the total sum is constant at 1.Therefore,the theory of compositional data was applied to the study on energy consumption structure,aiming to fully satisfy the special internal characteristics of the energy consumption structure and fully explore its relative information.The single forecast models,such as BPNN,ARIMA,and triple exponential smoothing,were constructed respectively for each component under spherical coordinate translation;based on the minimization of the sum of squared Aitchison distance in the compositional data,the combined forecast models with fixed and variable weights were constructed respectively;the changing trend of Chinas energy consumption structure from 2024 to 2030 was forecasted by the variable-weighted combination model with the minimum average Aitchison distance value MSD.The forecast results showed that China's future energy consumption structure would develop toward a more diversified pattern,with an increasing trend of the proportion of clean energy consumption,and a still dominant position of fossil resources such as coal.

compositional dataAitchison distancespherical coordinate translationenergy consumption structurevariable-weighted combined predictiondiversified patternclean energy

索瑞霞、王琪、韩秋彤

展开 >

西安科技大学管理学院,陕西省西安市,710054

成分数据 Aitchison距离 球坐标变换 能源消费结构 定变权组合预测 多元化格局 清洁能源

2024

中国煤炭
煤炭信息研究院

中国煤炭

CSTPCD北大核心
影响因子:0.736
ISSN:1006-530X
年,卷(期):2024.50(11)