首页|基于无人机的人工植被分布识别与重建效果评价

基于无人机的人工植被分布识别与重建效果评价

扫码查看
人工植被重建是矿区土地复垦与生态修复的基础性工作,分析人工植被重建效果是评价生态修复质量的重要环节.以内蒙古蒙泰不连沟煤矿土地复垦示范区为主要研究区,采用无人机搭载多光谱相机进行数据采集,并应用3种常见的机器学习算法,综合地物光谱、纹理的差异提取人工植被.在此基础上,选取植被生物量指标,分析研究区坡顶人工植被生长状况,并评价其植被重建效果.研究结果表明,对机器学习分类方法进行超参数调优能够有效提升模型分类精度,超参数调优后随机森林分类模型分类精度最高,总体精度为82.11%,Kappa系数为0.77;使用随机森林模型获得的反演结果精度最高,其R2为0.93,均方根误差为13.97.示范区坡顶的草本植被重建效果欠佳,有接近66.6%面积区域生物量等级处于0~50 g/m2的范围;灌木重建效果较好,有接近61.4%面积区域生物量等级处于100~150g/m2的范围.
Evaluation of the effects of artificial vegetation distribution identification and reconstruction based on UAV
Artificial vegetation reconstruction is the foundational work for land reclamation and ecological restoration in mining areas,and analyzing the effects of artificial vegetation reconstruction is an important link of ecological restoration quality evaluation.Taking the land reclamation demonstration area of Inner Mongolia Mengtai Buliangou Coal Mine as the main study area,Using UAV with multispectral cameras for data acquisition and three common machine learning algorithms for application,artificial vegetation data was extracted based on the differences in spectral and texture characteristics of land and land cover.On this basis,selecting the vegetation biomass index to analyze the growth status of artificial vegetation on the ridges of the study area,its artificial vegetation reconstruction effect was evaluated.The results showed that hyperparameter tuning for machine learning classification methods could effectively improve the classification accuracy of the model,the random forest classification model had the highest classification accuracy after hyperparameter tuning,with an overall accuracy of 82.11%and a Kappa coefficient of 0.77;the inversion results obtained by the random forest model had the highest accuracy,with an R2 of 0.93 and a root mean square error of 13.97;the reconstruction effect of herbaceous vegetation on the ridges of the demonstration area was poor,with nearly 66.6%of the area having a biomass grade in the range of 0-50 g/m2;the reconstruction effect of shrubs was better,with nearly 61.4%of the area having a biomass grade in the range of 100-150 g/m2.

UAV remote sensingartificial vegetation reconstructionland reclamation in mining areahyperparameter tuning

何继、崔瑞豪、李虎民、王磊、马飞、王培俊

展开 >

内蒙古蒙泰不连沟煤业有限责任公司,内蒙古自治区鄂尔多斯市,010300

中国矿业大学环境与测绘学院,江苏省徐州市,221116

华电煤业集团数智技术有限公司,北京市房山区,102400

中国矿业大学公共管理学院,江苏省徐州市,221116

展开 >

无人机遥感 人工植被重建 矿区土地复垦 超参数调优

2024

中国煤炭
煤炭信息研究院

中国煤炭

CSTPCD北大核心
影响因子:0.736
ISSN:1006-530X
年,卷(期):2024.50(11)