首页|基于透明地质模型和煤岩识别的自主割煤技术实践探析

基于透明地质模型和煤岩识别的自主割煤技术实践探析

扫码查看
为解决传统采煤机的记忆截割模式存在的无法自主调整滚筒高度导致割岩量大、人工干预频繁、工程质量难以持续动态达标的问题,提出了一种基于透明地质模型和煤岩识别技术的自主割煤方法.通过构建煤矿透明地质模型对煤矿井下进行地质勘探及设备分布检测,完成多源数据收集.基于透明地质模型,采集液压支架检测的煤机位置以及采煤机行程编码器信息,应用煤岩识别技术进一步优化截割路径.据此提出采煤机滚筒轨迹优化模型以计算整个割煤循环过程中滚筒最合理的截割高度,使产生的截割数据更贴近真实开采环境,实现全过程自主割煤.为验证提出的技术可行性,以国能神东煤炭集团石圪台煤矿31309工作面作为研究对象进行自动化割煤,结果表明,31309工作面工程质量能够保持动态达标,煤机自动化率由92.86%提升到98.54%,人工干预率由26.84%降低到5.12%,每班自动化割煤约2.3万t,达到工作面预期产量.
Exploration of autonomous coal cutting technology practice based upon transparent geological models and coal-rock identification
To address the issues in traditional shearer memory cutting modes,such as large rock cutting volume,frequent manual intervention,and difficulty in maintaining dynamic engineering quality caused by the inability to autonomously adjust the drum height,an autonomous coal cutting method based upon transparent geological models and coal-rock identification technology is proposed.By constructing a transparent geological model for underground geological exploration and equipment distribution detection,multi-source data collection is completed.Based upon the transparent geological model,collect the position of the coal machine detected by the hydraulic support and the encoder information of the coal mining machine stroke,and apply coal-rock recognition technology to further optimize the cutting path.According to this,a coal mining machine drum trajectory optimization model is proposed to calculate the most reasonable cutting height of the drum during the entire coal cutting cycle,so that the generated cutting data is closer to the real mining environment and achieves autonomous coal cutting throughout the entire process.To verify the feasibility of the proposed technology,automated coal cutting is carried out on the 31309 working face of Shigetai Coal Mine in Guoneng Shendong Coal Group.The results show that the engineering quality of the 31309 working face could maintain dynamic compliance,the coal machine automation rate increases from 92.86%to 98.54%,the manual intervention rate decreases from 26.84%to 5.12%,and the automated coal cutting per shift is about 23000 tons,which achieves the expected output of the working face.

transparent geological modelcoal-rock identificationautonomous coal cuttingintelligent coal mining

莫斌

展开 >

国能神东煤炭集团有限责任公司石圪台煤矿,陕西省榆林市,719315

透明地质模型 煤岩识别 自主割煤 智能化采煤

2024

中国煤炭
煤炭信息研究院

中国煤炭

CSTPCD北大核心
影响因子:0.736
ISSN:1006-530X
年,卷(期):2024.50(z1)