首页|图像超分辨率技术在智能化煤矿的应用研究

图像超分辨率技术在智能化煤矿的应用研究

扫码查看
为解决锦界煤矿井下光线暗、能见度低、煤尘大导致监控下的矿井图像结构扭曲、细节信息缺失等问题,提出了一种基于通道图卷积和残差聚合的图像超分辨率重建算法.利用残差聚合网络充分获取残差块间的层级特征、利用通道图卷积构建特征图通道间的内在关联性、利用多头注意力转移模块将通道图卷积和注意力分支输出的特征整合到残差网络中,得到的输出不仅充分利用了各个残差块间的层级特征,同时也利用了高级特征之间的潜在关联性.实验结果表明,与已有经典超分辨率算法相比,该算法重建出的图像结构清晰且细节信息丰富.
Study of the application of image super resolution technology in intelligent coal mine
In order to solve the problems of distorted mine image structure and missing detail information caused by low light,low visibility,and large coal dust under monitoring in Jinjie Coal Mine,a super-resolution reconstruction algorithm based on channel graph convolution and residual aggregation was proposed.By utilizing the residual aggregation network to fully obtain the hierarchical features between residual blocks,constructing the intrinsic correlations between feature map channels through channel graph convolution,and integrating the features output from channel graph convolution and attention branches into the residual network through a multi-head attention transfer module,the output result not only fully utilized the hierarchical features between each residual block,but also took advantage of the potential correlations between high-level features.The experimental results showed that compared with existing classical super-resolution algorithms,the image reconstructed by this algorithm had clear structure and rich detail information.

mine imagesuper-resolution reconstructionchannel graph convolutionresidual aggregationmulti-head attentionhierarchical features

姜继升

展开 >

国能神东煤炭集团有限责任公司锦界煤矿,陕西省榆林市,719319

矿井图像 超分辨率重建 通道图卷积 残差聚合 多头注意力 层级特征

2024

中国煤炭
煤炭信息研究院

中国煤炭

CSTPCD北大核心
影响因子:0.736
ISSN:1006-530X
年,卷(期):2024.50(z1)