首页|老年人群共病风险因素与预测模型研究:以广州市为例

老年人群共病风险因素与预测模型研究:以广州市为例

扫码查看
目的 探讨老年人群患共病的风险因素,构建风险预测模型.方法 采用多层随机整群抽样法,调查广州市1 100名60岁以上老年人群的人口学特征、文化程度、婚姻状况和共病情况.采用单因素检验、logistics回归分析、决策树CHAID模型探讨老年群体共病的影响因素.结果 logistics回归分析显示性别、城乡、腰臀比、睡眠时长、每天慢走时间、每天小强度家务劳动时间是老年人群患共病的相关因素,其中中心型肥胖(OR=1.502,95%CI:1.368-1.685),城区(OR=1.298,95%CI:1.228-1.392),睡眠时长少于7小时(OR=1.367,95%CI:1.232-1.471)是老年人群患共病的危险因素,男性(OR=0.870,95%CI:0.820-0.961)、平均每天慢走时间大于30分钟(OR=0.623,95%CI:0.470-0.824)、小强度家务劳动大于30分钟(OR=0.638,95%CI:0.485-0.839)以及睡眠时长超过8小时是老年人群患共病的保护因素.CHAID决策树模型显示中心型肥胖、有抽烟习惯、睡眠时长过短是老年人群患共病的重要危险因素.结论 老年群体共病与中心型肥胖、有抽烟习惯、睡眠时间过短关系密切,决策树和多元逻辑回归模型在分析老年群体患共病影响因素时可互为补充.
Risk factors and predictive model for comorbidity in the elderly population:Taking Guangzhou City as an example
Objective To explore the risk factors of comorbidity in the elderly population and to construct a risk prediction model.Methods Multi-stage sampling method was used to investigate the demographic charac-teristics,educational background,marital status,and comorbidity of 1,100 elderly people aged 60 and above in Guangzhou City.Univariate tests,logistic regression analysis,and decision tree CHAID model were used to ex-plore the Influencing factors of comorbidity in the elderly population.Results Logistic regression analysis results showed that gender,urban or rural area,waist to hip ratio,sleep duration,daily slow walking time,and daily low-intensity household chores were related factors for comorbidity in the elderly population,among which central obe-sity(OR=1.502,95%CI:1.368-1.685),urban area(OR=1.298,95%CI:1.228-1.392),and sleep du-ration less than 7 hours(OR=1.367,95%CI:1.232-1.471)were risk factors for comorbidity in the elderly population,and male(OR=0.870,95%CI:0.820-0.961),average daily slow walking time more than 30 mi-nutes(OR=0.623,95%CI:0.470-0.824),low-intensity household chores more than 30 minutes(OR=0.638,95%CI:0.485-0.839),and sleep duration more than 8 hours were protective factors for comorbidity in the elderly population.The CHAID decision tree model showed that central obesity,smoking habit,and short sleep duration were important risk factors for comorbidity in the elderly population.Conclusions There is a close relationship between comorbidity in the elderly population and central obesity,smoking habit,and short sleep time.Decision trees and multiple logistic regression models can complement each other in analyzing the influencing factors of comorbidity in the elderly population.

ComorbidityElderly populationDecision treeChronic diseaseModelObesity

张瑜、潘华峰、陈楚杰

展开 >

广州中医药大学体育健康学院,广东广州 510006

共病 老年人群 决策树 慢性病 模型 肥胖

国家自然科学基金广东省教育科学规划课题广东省普通高等学校创新团队项目广东省哲学社会科学重点实验室"数字中医药文化研究与传播创新重点实验室"支助项目

821743192023JKDY0132020WCXTD003

2024

中国农村卫生事业管理
中华预防医学会

中国农村卫生事业管理

影响因子:0.744
ISSN:1005-5916
年,卷(期):2024.44(3)
  • 21