首页|目标检测算法YOLOv5s用于柑桔成熟果实检测的改进

目标检测算法YOLOv5s用于柑桔成熟果实检测的改进

扫码查看
巡检机器人精准检测成熟柑桔果实,对于保证柑桔果园产量巡检作业效率和质量至关重要.考虑到成熟柑桔果实特有的颜色空间、果实遮挡导致的小目标以及巡检机器人有限的硬件资源,提出一种简单有效的基于YOLOv5s的柑桔成熟果实检测方法——改进YOLOv5s.改进YOLOv5s,主要设计一个由3层Context Aggregation Block(CABlock)组成的金字塔结构特征提取层并将其插入到YOLOv5s网络的Head部分.改进YOLOv5s模型具有如下优点:(1)集成的底层CABlock通过特征通道注意力机制和空间注意力机制,能更好更快地学习小目标局部成熟果实颜色和纹理特征、重叠果实边缘特征;(2)多层CABlock构建的特征金字塔能够有效地避免小目标随网络深度增加而消失,从而降低小目标果实漏检率.柑桔成熟果实识别验证试验结果表明,改进YOLOv5s的检测准确率和平均精度分别为98.21%和98.07%,较原始YOLOv5s分别提升了 0.31和0.17百分点,较Faster R-CNN分别提升了 8.41和8.31百分点,识别遮挡果实、重叠果实以及小目标果实的平均精度分别为99.4%、97.2%和98.0%;单张成熟柑桔果实图像的平均检测时间32.5 ms,模型占用内存15.8 MB.该改进YOLOv5s模型可实现果园自然环境下柑桔成熟果实快速准确地检测识别与产量预估,可为柑桔果园巡检机器人产量巡检提供技术支持.
Improving Detection of Mature Citrus Fruit Based on Target Detection Algorithm YOLOv5s
In order to improve the efficiency and quality for inspection of citrus orchard,it is very important for inspection robot to accurately detect ripe citrus fruits.Considering the unique color space of ripe citrus fruits,small targets caused by fruit occlusion,and limited hardware resources of inspection robot,this paper proposes a simple and effective citrus ripe fruit detection method based on improving YOLOv5s.In this work,to im-prove YOLOv5s,a pyramid structure feature extraction layer composed of three-layer Context Aggregation blocks(CABlock)was designed and inserted into the head part of YOLOv5s network.The improved YOLOv5s model has the following advantages:(1)The integrated underlying CABlock module can better and faster learn the color and texture features of small target of local ripe fruits and the edge features of overlapped fruits through the feature channel attention mechanism and spatial attention mechanism.(2)The feature pyra-mid constructed by multi-layer CABlock module can effectively avoid the disappearance of small targets with the increase of network depth,thus reducing the missing rate of small target fruits.The results of citrus ripe fruit recognition validation test show that the accuracy and average accuracy of the improved YOLOv5s net-work model were 98.21%and 98.07%,respectively,which were improved by 0.31%and 0.17%compared with the original YOLOv5s,and improved by 8.41%and 8.31%compared with faster R-CNN,respectively.The average accuracy of identifying occluded fruits,overlapping fruits and small target fruits was 99.4%,97.2%and 98.0%,respectively.Meanwhile,the average detection time of a single mature citrus fruit image was 32.5 ms.Model occupies 15.8 MB of memory.The results show that the improved YOLOv5s model can realize rapid and accurate detection and identification of mature citrus fruit,and prediction of yield under natural environment of orchard,and can provide technical support for inspection of yield with citrus orchard inspection robot.

citrusmature fruitYOLOv5scontext aggregation moduletarget detectionyield estimation

蹇川、郑永强、刘艳梅、马岩岩、易时来、吕强、谢让金

展开 >

西南大学工程技术学院,重庆,400715

西南大学柑桔研究所/国家柑桔工程技术研究中心/国家数字种植业(柑桔)创新分中心,重庆,400712

重庆市北碚区经济作物技术推广站,重庆,400700

柑桔 成熟果实 YOLOv5s Context Aggregation Block 目标检测 产量预估

国家自然科学基金国家现代农业产业技术体系建设专项资金西南大学先导计划项目

31972991CARS-26SWU-XDZD22004

2024

中国南方果树
中国农业科学院柑桔研究所

中国南方果树

CSTPCD北大核心
影响因子:0.527
ISSN:1007-1431
年,卷(期):2024.53(1)
  • 20