首页|目标检测算法Yolov 8用于转色柑桔果实检测的改进

目标检测算法Yolov 8用于转色柑桔果实检测的改进

扫码查看
为提高在自然环境下对柑桔果实的识别,针对当前柑桔目标检测中树冠大、果实个体小、密集且遮挡严重等导致果实检测难度大的问题,基于自然状态下转色中后期温州蜜柑单侧完整树冠图像构建的果实数据集,提出了一种在 Yolov8 检测模型上添加小目标检测层的 I-Yolov8 检测模型.结果表明,以自然环境下的冠层为背景,丰富了数据集的目标特征,而添加的小目标检测层可用于检测 4 像素×4 像素以上的目标.模型的训练平均精度(mAP)达到 93.5%,相比 Yolov8提升了 1.3 百分点.在晴天和阴天两个自然场景下分别进行预测,I-Yolov8 和 Yolov8 的检测精确率均为 100%;I-Yolov8 的召回率分别达 72.45%和 91.61%,相比 Yolov8 分别提升了 16.33 和14.63 百分点.I-Yolov8 网络模型对于自然环境中柑桔的检测精度高,具备较高的应用潜力.
Improvement of Yolov8 for detection of citrus fruit color-changing
In order to improve the recognition of citrus fruit in natural environment,aiming at the problem that fruit detection is difficult due to the large crown,small individual fruit,dense fruit and serious occlusion in the current citrus target detection,an I-Yolov8 detection model with small target detection layer added to the Yolov8 detection model was proposed based on the fruit dataset constructed by the unilateral complete crown image of Citrus unshiu Marc.cv.Miyagawa wase during mid-late stages of fruit color-changing period under natural conditions.The results showed that the canopy in the natural environment enriches the target features of the dataset,and the added small target detection layer could be used to detect the targets with or above 4 pixel×4 pixel,and the mean Average Precision(mAP)of the model could reach 93.5%,which was 1.3%higher than that of Yolov8.The detection accuracy of I-Yolov8 and Yolov8 was 100%,respectively in sunny and cloudy natural scenarios,and the recall rate of I-Yolov8 was 72.45%and 91.61%,respectively,which was 16.33 and 14.63 percent higher than that of Yolov8,respectively.Therefore,the I-Yolov8 network model has high detection accuracy for citrus fruit in the natural environment and high application potential.

Yolov8small target detection layerMiyagawa wasecanopy fruit image

李永杰、易时来、朱潇婷、金国强、田喜

展开 >

临海市特产技术推广总站,浙江临海,317000

西南大学/中国农业科学院柑桔研究所,重庆,400712

北京市农林科学院智能装备技术研究中心,北京,100097

Yolov8 小目标检测层 温州蜜柑 冠层果实

中国博士后基金国家自然科学基金浙江省果品产业技术项目(2022-2024)临海市科技计划(农业科技领域)项目

2022M720492319014022022NK03

2024

中国南方果树
中国农业科学院柑桔研究所

中国南方果树

CSTPCD北大核心
影响因子:0.527
ISSN:1007-1431
年,卷(期):2024.53(3)
  • 27