首页|基于改进残差神经网络的家蚕日龄识别模型

基于改进残差神经网络的家蚕日龄识别模型

扫码查看
家蚕日龄的准确识别有助于精准饲喂和动物福利,因此为准确识别家蚕生长时期中3龄第1天至5龄第7天,共14个日龄,在实际环境下采集特定家蚕品种,构建以14个日龄为单位的数据集.提出一种基于改进残差神经网络的Moga-ResNet,该方法在经典残差神经网络ResNet50的基础上,引入多阶门控机制以获取日龄图像的显著性特征.通过在同一个家蚕日龄数据集上开展模型训练与测试得到,Moga-ResNet的识别准确率为96.57%,F1值为96.57%,召回率为 96.62%,与 Swin Transformer、MobileNet v3、CSPNet 和 DenseNet 四个经典模型的评价指标相比,Moga-ResNet 在家蚕的日龄识别中具有较强的识别能力,可以为开展家蚕精准饲喂和数字化管理相关工作提供基础.
Day-age recognition model for the domestic silkworm based on improved residual neural network
Accurate identification of silkworm day-age contributes to precise feeding and animal welfare.In order to accurately identify 14 day-age from the first day of age 3 to the seventh day of age 5 in the growth period of silkworm,this paper constructs a dataset with 14 day-age units by collecting specific silkworm species in a real environment.This paper proposes Moga-ResNet method based on an improved residual neural network.This method introduces a multi-order gating mechanism to obtain the saliency features of day-age images based on the classical residual neural network ResNet50.Through model training and testing on the same domestic silkworm day-age dataset,the recognition accuracy of Moga-ResNet is 96.57%,the F1 value is 96.57%,and the recall rate is 96.62%.Compared with the evaluation indexes of four classic models,including Swin Transformer,MobileNet v3,CSPNet and DenseNet,Moga-ResNe achieved a stronger recognition ability in day-age recognition of domestic silkworm,which can provide a foundation for carrying out work related to precise feeding and digital management.

silkwormday-age identificationmulti-order gating mechanismresidual neural network

田丁伊、石洪康、祝诗平、陈肖、张剑飞

展开 >

西南大学工程技术学院,重庆市,400700

宜宾西南大学研究院,四川宜宾,644000

四川省农业科学院蚕业研究所,四川南充,637000

家蚕 日龄识别 多阶门控机制 残差神经网络

四川省自然科学基金资助项目南充市科技计划项目

2023NSFSC049822YYJCYJ0009

2024

中国农机化学报
农业部南京农业机械化研究所

中国农机化学报

CSTPCD北大核心
影响因子:0.684
ISSN:2095-5553
年,卷(期):2024.45(2)
  • 22