首页|基于改进版Faster-RCNN的复杂背景下桃树黄叶病识别研究

基于改进版Faster-RCNN的复杂背景下桃树黄叶病识别研究

扫码查看
由于桃树黄叶病(以下简称PTYLD)初期症状不明显,现有的基于深度学习的桃树病害识别技术,存在识别准确率不高、识别品种单一的问题,提出一种基于Faster-RCNN的PTYLD识别模型.为提高模型对PTYLD识别准确率和识别多样性,提出使用RS-Loss函数代替RPN中的交叉熵函数、使用Soft-NMS算法代替原来的NMS算法,来改进Faster-RCNN.通过试验对比初始版和改进版Faster-RCNN对PTYLD的识别效果.试验结果显示,改进后的Faster-RCNN对黄叶病识别的各类别平均准确率mAP达90.56%、召回率达94.16%、准确率达92.53%,能识别常见的五种PTYLD.
Recognition of peach tree yellow leaf disease under complex background based on improved Faster-RCNN
Since the initial symptoms of Peach Tree Yellow Leaf Disease(PTYLD)are not readily apparent,the existing deep learning-based recognition techniques for this disease suffer from issues like inaccurate recognition and limited recognition species.To address this,a recognition model of PTYLD based on Faster-RCNN(Region-based Convolutional Neural Network)is proposed.In order to enhance the recognition accuracy and diversity of PTYLD,RS-Loss function is used to replace the cross-entropy function in the Region Proposal Network(RPN),and the Soft-NMS algorithm is used to replace the original Non-Maximum Suppression(NMS)algorithm,so as to improve Faster-RCNN.The recognition effect of the initial and improved version of Faster-RCNN models on PTYLD is compared by experiments.The experimental results demonstrate that the improved Faster-RCNN achieves a mean average precision(mAP)of 90.56%,recall rate of 94.16%,an accuracy of 92.53%for each category of yellow leaf disease,and can identify five common PTYLD.

peach tree yellow leaf diseaseFaster-RCNNcomplex backgroundSoft-NMS

张平川、胡彦军、张烨、张彩虹、陈昭、陈旭

展开 >

河南科技学院计算机科学技术学院,河南新乡,453003

河南科技大学应用工程学院,河南三门峡,472099

新乡学院机电工程学院,河南新乡,453003

桃树黄叶病 Faster-RCNN 复杂背景 软性非极大值抑制算法

河南省科技厅科技攻关计划河南省科技厅科技攻关计划

222102210116212102310553

2024

中国农机化学报
农业部南京农业机械化研究所

中国农机化学报

CSTPCD北大核心
影响因子:0.684
ISSN:2095-5553
年,卷(期):2024.45(3)
  • 24