首页|基于CKF的大型拖拉机状态参数估计研究

基于CKF的大型拖拉机状态参数估计研究

扫码查看
拖拉机运行状态的准确识别与估计是其安全行驶和平稳控制的重要依据.针对大型拖拉机状态参数的估计复杂、精确度不高等问题,建立大型拖拉机整车三自由度仿真模型,其中包含Dugoff轮胎模型,提出基于容积卡尔曼滤波理论的大型拖拉机状态参数估计算法,并对大型拖拉机的行驶参数进行估计,包含纵向速度、侧向速度、质心侧偏角、横摆角速度.利用Matlab软件仿真验证,在双移线路面附着系数为0.8和0.6的工况下,对比仿真的状态参数和算法估计的数值.结果表明,拖拉机横摆角速度、质心侧偏角和纵向速度仿真值与真实值的误差分别为0.1、0.2、0.4,验证基于容积卡尔曼滤波算法对大型拖拉机状态参数估计的可行性和准确性,为大型拖拉机的稳定性控制等提供借鉴和参考.
Research on state parameter estimation of large tractor based on CKF
Accurate identification and estimation of tractor running state is an important basis for its safe driving and smooth control.Aiming at the problems of complex estimation and low accuracy of state parameters of large tractors,a three-degree-of-freedom simulation model of large tractors was established,including Dugoff tire model.The state parameter estimation algorithm of large tractor based on volume Kalman filter theory was proposed.Then,the driving parameters of large tractors were estimated,including longitudinal speed,lateral speed,sideslip angle of center of mass and yaw rate.Finally,the Matlab software was used to simulate and verify,and the simulated state parameters were compared with the values estimated by the algorithm under the condition that the adhesion coefficient of the double-shift line surface was 0.8 and 0.6.The results showed that the errors between the simulated values of yaw rate,sideslip angle of center of mass and longitudinal speed of tractor and the real values were 0.1,0.2 and 0.4,respectively,which verified the feasibility and accuracy of estimating the state parameters of large tractors based on the volumetric Kalman filter algorithm,and provided reference for the stability control of large tractors.

large tractornonlinear dynamicsvolumetric kalman filteringstate parameterDugoff tire model

魏国俊、王鸿翔、王圣杰、王振雨、肖茂华

展开 >

江苏省农业机械试验鉴定站,南京市,210017

江苏电子信息职业学院,江苏淮安,223003

江苏悦达智能农业装备有限公司,江苏盐城,224007

南京农业大学工学院,南京市,210031

展开 >

大型拖拉机 非线性动力学 容积卡尔曼滤波 状态参数 Dugoff轮胎模型

国家重点研发计划江苏省现代农机装备与技术示范推广项目江苏省现代农机装备与技术示范推广项目

2022YFD2001204NJ2023-27NJ2021-06

2024

中国农机化学报
农业部南京农业机械化研究所

中国农机化学报

CSTPCD北大核心
影响因子:0.684
ISSN:2095-5553
年,卷(期):2024.45(4)
  • 25