首页|基于改进轻量化EfficientNet-V2模型的小麦种子分类

基于改进轻量化EfficientNet-V2模型的小麦种子分类

扫码查看
小麦种子常混有燕麦、大麦等其他种子,如何分类足够纯度的种子是一个重要问题.为解决种子纯度问题,提出一种基于改进的EfficientNet-V2模型的种子分类方法,将其命名为CA-EfficientNet-V2_xs.首先,通过购买常用小麦种子(含有常见的燕麦、大麦等杂种),自制数据集;其次,为加快训练以及针对自制数据集数量不足的问题,采用迁移学习的方法;再次,为更好地帮助模型更加精准地定位和识别感兴趣的目标,将采用Coordinate Attention(CA)注意力机制来替换SE注意力机制;最后,通过精简网络结构使模型更小、训练速度更快.试验表明,改进后模型的分类准确率达到99.7%,比未改进之前的网络分类准确率提升 1.3%;与EfficientNet-V2_s模型的 78 MB相比,改进后模型大小降至3.8 MB,模型大小降低;改进后的模型速度比主流网络更快.
Wheat seed classification based on improved lightweight EfficientNet-V2 model
Wheat seeds are often mixed with other seeds such as oats and barley,and how to classify seeds of sufficient purity is an important problem.In order to address this issue,a seed classification method based on an improved EfficientNet-V2 model is proposed,and the enhanced network is named CA-EfficientNet-V2_xs.Firstly,a dataset is constructed by purchasing commonly used wheat seeds(including common impurities such as oats and barley).Secondly,in order to expedite training and overcome the issue of insufficient data in the self-made dataset,transfer learning is adopted.Thirdly,in order to assist the model in more accurately locating and identifying the target of interest,the Coordinate Attention(CA)mechanism is adopted to replace the SE attention mechanism.Finally,the network structure is streamlined to reduce the model size and enhance training speed.The experimental results show that the classification accuracy of the improved model reaches 99.7%,which is 1.3%higher than that of the network before the improvement.Compared with 78 MB in the EfficientNet-V2_s model,the improved model size is reduced to 3.8 MB and the model size is reduced.The improved model is faster than mainstream networks.

wheat seeddeep learningattention mechanismtransfer learningEfficientNet-V2 model

韩鹏飞、宋其江、贾梦实

展开 >

东北林业大学机电工程学院,哈尔滨市,150040

小麦种子 深度学习 注意力机制 迁移学习 EfficientNet-V2模型

国家重点研发计划中央高校基本科研业务费专项资金项目

2021YFD2200604042572020DR12

2024

中国农机化学报
农业部南京农业机械化研究所

中国农机化学报

CSTPCD北大核心
影响因子:0.684
ISSN:2095-5553
年,卷(期):2024.45(9)
  • 1
  • 7