首页|基于SIFT和自适应阈值的RANSAC算法的茶饼图像配准研究

基于SIFT和自适应阈值的RANSAC算法的茶饼图像配准研究

Research on image registration of tea cakes based on SIFT and RANSAC algorithm with adaptive threshold

扫码查看
在茶饼图像的特征点精匹配中,人工选择阈值会导致误匹配和漏匹配问题,为此提出一种基于F1-Score最大化的方法,自动选取距离阈值的随机抽样一致性(RANSAC)算法进行特征点对筛选.用尺度不变特征变换(SIFT)算法提取茶饼图像的特征点,采用快速近似最近邻(FLANN)算法将异源图像提取出来的特征点进行粗匹配,用改进后的RANSAC算法优化特征点匹配.通过对比不同算法的匹配准确率和均方根误差,证明本文算法在经过旋转、视角以及亮度变换的茶饼图像上能够综合考虑准确率和召回率,自适应地确定一个距离阈值,改进后的RANSAC算法使其准确率最大可以提高18.9%,均方根误差平均降低0.706 pixel,研究证明所提算法能够达到更好的匹配效果.
In the feature point fine matching of tea cake images,manual selection of threshold will lead to false matching and missing matching problems,a method based on F1-Score maximization is proposed to automatically select the Random Sample Consensus(RANSAC)algorithm of distance threshold for feature point pair screening.In this paper,the Scale Invariant Feature Transform(SIFT)algorithm is used to extract the feature points of the tea cake image,and the Fast Library for Approximate Nearest Neighbors(FLANN)algorithm is used to coarsely match the feature points extracted from the heterogeneous image,and then the improved RANSAC algorithm is used to optimize the feature point matching.By comparing the matching accuracy and rms error of different algorithms,it is proved that the proposed algorithm can comprehensively consider the accuracy and recall rate of tea cake images after rotation,viewing angle and brightness transformation,and adaptively determine a distance threshold,and the improved RANSAC algorithm can increase its accuracy by up to 18.9%,and reduce the rms error by 0.706 pixel on average.Studies have proved that the proposed algorithm can achieve better matching effect.

teatraceability identificationfeature point matchingscale invariant feature transformrandom sample consensus

白晓虎、杨瑞峰、郭晨霞、李坤

展开 >

中北大学仪器与电子学院,太原市,030051

山西省自动化检测装备与系统工程技术研究中心,太原市,030051

茶叶 溯源鉴定 特征点匹配 尺度不变特征变换 随机抽样一致性

2024

中国农机化学报
农业部南京农业机械化研究所

中国农机化学报

CSTPCD北大核心
影响因子:0.684
ISSN:2095-5553
年,卷(期):2024.45(10)