首页|果园机械化疏花技术与装备研究进展

果园机械化疏花技术与装备研究进展

扫码查看
为促进果园机械化疏花技术与装备发展,提高果园全程机械化水平,通过论述疏花的必要性与作业标准,以期为疏花工作提供理论指导.根据国内外手持式、振动式、机载式和智能式疏花机的工作方法与特点,概括分析其关键技术和优缺点.重点阐述机器视觉作为智能疏花机核心技术在花朵识别应用上的研究现状,通过对比YOLO、Faster R-CNN等典型花朵识别算法的平均精度、召回率和F1分数总结其制约因素和存在的主要问题.针对目前主流机载疏花机存在的工作模式单一、精准作业水平低、对果园标准化水平要求高、适用范围窄等主要问题,从规范果园种植方式、研发新型主轴结构与疏花绳材料、构建果园生产管理经验专家库、花朵识别技术的重点研究方向、智能疏花机未来研发重点5个方面进行展望.
Research progress of flower thinning technology and equipment in orchard mechanization
In order to promote the development of mechanized thinning technology and equipment in orchards,improve the overall level of orchard mechanization,this article first discusses the necessity and operational standards of thinning flowers,with the aim of providing theoretical guidance for thinning work.According to domestic and foreign vibration-type,handheld,airborne,and intelligent thinning machines working methods and characteristics,this article summarizes the advantages and disadvantages and analyzes the key technologies of the above equipment.It focuses on discussing the current research status of machine vision as the core support technology for intelligent thinning machines in flower recognition applications.By comparing typical flower recognition algorithms such as YOLO and Faster R-CNN,this article summarizes their limiting factors and major issues in terms of average precision,recall rate,and F1 score.In response to the main problems faced by current mainstream flower-thinning machine,such as a single working mode,low precision level,high requirement for orchard standardization level,and narrow applicability range,this article proposes the following five prospects,such as the standardization of orchard planting methods,the development of new spindle structures and thinning rope materials,the construction of orchard production management experience expert database,key research directions of flower recognition technology,future research direction of intelligent flower thinning machine.

orchard mechanizationthinning flowersin handairborneflower recognition

张振、雷哓晖、王伟、Andreas Herbst、吕晓兰

展开 >

江苏大学农业工程学院,江苏镇江,212013

江苏省农业科学院农业设施与装备研究所/农业农村部园艺作物农业装备重点实验室,南京市,210014

Institute for Chemical Application Technology of JKI,Braunschweig Messeweg,38104

果园机械化 疏花 手持 机载 花朵识别

2024

中国农机化学报
农业部南京农业机械化研究所

中国农机化学报

CSTPCD北大核心
影响因子:0.684
ISSN:2095-5553
年,卷(期):2024.45(10)