首页|基于APSIM模型模拟内蒙古春小麦不同土壤缺水条件下水氮优化管理模式

基于APSIM模型模拟内蒙古春小麦不同土壤缺水条件下水氮优化管理模式

扫码查看
水分和氮肥是小麦生长最主要的两大限制因子,如何优化灌溉小麦高产稳产、获得农业资源高效和环境友好的水肥管理方案是亟待解决的生产问题.控制试验结果的推广受限于试验地点、年限和试验设计,而基于过程机理的作物模型则可有效解决这一问题,已成为探究作物种植管理决策、评估农业适应气候变化的有力手段和技术工具.本研究利用 2010-2018 年内蒙古自治区巴彦淖尔市临河区农业气象实验站春小麦'永良 4 号'的试验观测资料(气象、作物、土壤和管理数据),确定模型中小麦生长发育关键参数;基于校准后模型及 1986-2020 年气象数据资料,设计不同干旱程度下多种智慧管理情景模式,结合水氮管理决策的遴选关键指标(产量、水肥施用量和水肥利用效率),确定春小麦水氮管理最优方案.结果表明:(1)基于APSIM模型春小麦发育期(出苗期、拔节期、开花期和成熟期)模块模拟值与观测值的RMSE在 1.96~3.21d范围内;基于 APSIM 模型春小麦生长(叶面积指数、地上部干物质质量和产量)模块模拟值与观测值的 RMSE分别为 1.65、292.44g·m-2 和 588.96kg·hm-2,APSIM模型可较好地定量模拟春小麦生长发育过程.(2)以产量、灌溉量、水分利用效率(WUE)、施氮肥量和氮素利用效率(NUE)为目标,得出土壤根层水分亏缺程度达 40%(S3P40)和土壤根层水分亏缺程度达 50%(S3P50)管理模式要优于其他管理模式.(3)与常规管理模式相比,以显著提高产量为生产目标,优选S3P40 管理模式,产量提高 14.4%;以稳产且减少水肥用量为生产目标,优选S3P50 管理模式,灌溉量减少 23.2%,施氮量减少 32.4%.
Simulated on Water and Nitrogen Optimization Management Model under Different Soil Water Shortage Conditions of Spring Wheat in Inner Mongolia Based on APSIM Model
Water and nitrogen are the two main limiting factors on wheat growth.How to optimize the water and fertilizer management practices of irrigated spring wheat,so as to retain high and stable yield,maintain highly use efficiency of agricultural resources and to be environmentally friendly,is an urgent production problem need to be solved.The promotion of controlled experiment results is limited by experiment sites,experiment duration or the number of experiment designs,while the process-based crop models can effectively solve this difficulty.In recent years,the crop model has become a powerful and technical tool for exploring better crop planting management practices and for evaluating how agriculture production adapts to climate change.In this study authors collected experimental observation data(meteorological,crop,soil,and management data)of spring wheat(Yongliang 4)from 2010 to 2018 at the agricultural meteorological experimental station in Linhe district,Bayannur city,Inner Mongolia Autonomous Region to determine the key genetic parameters of wheat growth and development in the APSIM-wheat model.Based on the calibrated model and meteorological data from1986 to 2020,we designed multiple intelligent management scenarios under different drought levels,and then explored the final optimal water and nitrogen management modes of spring wheat based on several key selection indicators(yield,water/fertilizer application rate,and water/fertilizer utilization efficiency).The results showed that:(1)the APSIM-wheat model can effectively reproduce the spring wheat development and growth with the RMSE of 1.96d to 3.21d for the spring wheat developmental stages(emergence,jointing,flowering and maturity).As for the wheat growth process(leaf area index(LAI),aboveground dry matter mass,and yield),the RMSE values were 1.65,292.44g·m-2,and 588.96 kg·ha-1,respectively.(2)Based on the key selection indicators(yield,irrigation amount,water utilization efficiency(WUE),nitrogen fertilizer application amount,and nitrogen utilization efficiency(NUE)),the research concluded that the two management modes,that auto irrigation be applied when soil root layer(60cm)water deficit reached 40%(S3P40)and when soil root layer water deficit reached 50%(S3P50),were superior to other management modes.(3)Compared with the conventional management mode,the S3P40 management mode was preferred with the production goal to significantly improve yield,in which lead to a 14.4%increase in yield production.With the production goal to stabilize yield and reduce water and fertilizer application amount simultaneously,the S3P50 management mode was favored,which resulted in a 23.2%reduction in irrigation amount and 32.4%reduction in nitrogen application rate compared with traditional management mode.

APSIM modelSpring wheatYieldWater utilization efficiencyNitrogen utilization efficiencyManagement decision-making system

伍露、程陈、杨霏云、樊栋樑、孙向伟

展开 >

中国气象局气象干部培训学院,北京 100081

丽水学院生态学院,丽水 323000

巴彦淖尔市气象局,巴彦淖尔 015000

APSIM模型 春小麦 产量 水分利用效率 氮素利用效率 管理决策制度

中国气象局创新发展专项国家自然科学基金

CXFZ2022J05332101294

2024

中国农业气象
中国农业科学院农业环境与可持续发展研究所

中国农业气象

CSTPCD
影响因子:1.679
ISSN:1000-6362
年,卷(期):2024.45(5)
  • 35