首页|从机器认识的不透明性看人工智能的本质及其限度

从机器认识的不透明性看人工智能的本质及其限度

扫码查看
当前人工智能研究中的核心理论问题之一是人工智能的"理解力"问题.对于大多数的计算模拟而言,人们无法获得那种传统认识论意义上的透明性.从计算科学的技术实现层面看,面对巨大而复杂的计算量,人类不可能审查全部的计算过程,这就造成了人类在认识上存在着不透明性的盲区.基于认知不透明性与认识不透明性的区分,机器认识中的不透明性会导致"理解"的缺失.从认识透明性的角度分析人对机器可能的认识把握程度及其要求,可以对机器的理解能力的本质及其限度做出相对精准和深入的探讨,为人们厘清机器认识论的特征,进而理解人工智能与人类智能的本质联系与区别,提供一条富有启发性的路径.
The Nature of AI and Its Limits in the Light of the Opacity of Machine Cognition
One of the core theoretical issues in current AI research is understandability.Most computational simulations do not allow one to access transparency in the traditional epistemological sense.The enormous number of complex technological calculations in the implementation of computing science make it impossible to review the entire process of calculation,leaving a blind spot in human understanding.Based on the distinction between the opacity of cognition and the opacity of epistemology,the opacity of machine cognition will lead to a lack of understanding.An analysis of the possible degree and requirements of human ability to understand machines in the light of epistemological transparency allows us to conduct a relatively accurate in-depth discussion on the nature and limits of machine understandability and clarify the characteristics of machine epistemology.Thus this article seeks to provide a heuristic pathway to the understanding of the essential connections and differences between artificial intelligence and human intelligence.

董春雨

展开 >

北京师范大学价值与文化研究中心 北京 100875

认识不透明性 理解 计算模拟 机器认识论

2023

中国社会科学
中国社会科学院

中国社会科学

CSTPCDCSSCICHSSCD北大核心
影响因子:5.644
ISSN:1002-4921
年,卷(期):2023.(5)
  • 9