首页|基于遥感指数与深度学习的黄河冰凌遥感监测识别分析

基于遥感指数与深度学习的黄河冰凌遥感监测识别分析

扫码查看
黄河流域特殊的地理位置和环境因素造就了其复杂的凌情特征,及时准确掌握凌汛期间冰凌变化规律与特点是凌汛监测防治的关键任务.卫星遥感可实现黄河冰凌的大范围快速提取,目前常用的方法有遥感指数与深度学习两类,为验证和对比不同方法对黄河冰凌遥感监测识别的有效性,基于Sentinel-2遥感数据,利用归一化积雪指数及其改进形式和U2-Net等三种方法对2023年黄河宁蒙段冰凌进行遥感提取.结果表明:NDSI、MNDSI、U2-Net三种方法的结果分类精度分别为83.42%、87.98%和92.01%;Kappa系数分别为0.88、0.90和0.97;三种方法均对冰凌有较好的提取效果,但指数法对于流凌、清沟等其他类型的识别效果较差,浅滩处提取的边界较为杂乱,U2-Net可以精确区分出清沟,提取冰凌边界的效果更好.
Remote sensing extraction of river ice in the Yellow River based on NDSI and deep learning
The special geographical location and environmental factors in the Yellow River Basin lead to its complex transit characteristics.Satellite remote sensing can realize the rapid extraction of the Yellow River ice in a large range.Currently,there are two commonly used methods:remote sensing index and deep learning.In order to verify and compare the effectiveness of different methods for remote sensing monitoring and identification of the Yellow River ice,Sentinel-2 remote sensing data is used.Using normalized snow index and its improved form and U2-Net,the ice in the Ning-Meng section of the Yellow River in 2023 was extracted by remote sensing.Sentinel-2 image was extracted on February 20,2023,and GF data from February 19-21 was used as verification.The clas-sification accuracy of NDSI,MNDSI and U2-Net methods were 83.42%,87.98%and 92.01%,respectively,and the Kappa coefficient was 0.88,0.90 and 0.97,respectively.It can be seen from the classification results that the three methods have a good extraction effect on river ice.However,NDSI has poor recognition effect on other land classes such as runling,gully clearing,etc.MNDSI can distinguish different land classes from river ice,but the extraction boundary is more chaotic.Generally,U2-Net can better distinguish river ice from other land classes.

Yellow Riverriver iceremote sensing extractionNDSIMNDSIU2-Net

宋文龙、冯天时、陈龙、何倩、胡军、卢奕竹、冯珺、刘宏洁

展开 >

中国水利水电科学研究院,北京 100038

水利部防洪抗旱减灾工程技术研究中心(水旱灾害防御中心),北京 100038

首都师范大学资源环境与旅游学院,北京 100871

黄河水利委员会山东水文水资源局,济南 250199

展开 >

黄河 冰凌 卫星遥感 NDSI MNDSI U2-Net

三峡后续工作项目

JZ0161A012023

2024

中国水利水电科学研究院学报(中英文)
中国水利水电科学研究院

中国水利水电科学研究院学报(中英文)

CSTPCD北大核心
影响因子:0.523
ISSN:2097-096X
年,卷(期):2024.22(1)
  • 21