Abstract
Objective:To investigate the changes of the AMP-activated protein kinase(AMPK)/uncoupling protein 2(UCP2)(AMPK/UCP2)pathway in ovarian granulosa cells with PCOS and its relationship with mitochondrial dysfunction.Methods:PCOS mouse models and normally fed mice,ovarian granulosa cells from the two mice were extracted,and the protein expression levels of AMPKα,p-AMPKα and UCP2 were detected by western blotting.The ROS and ATP content of granulosa cells were determined by colorimetric and chemiluminescence immunoassays to assess mitochondrial function.Pearson correlation analysis was used to determine the correlation between AMPK/UCP2 pathway-related proteins,ROS and ATP.Results:P-AMPKα/GAPDH(0.12±0.09),AMPKα/GAPDH(0.35±0.40),P-AMPKα/AMPKα(0.56±0.33)and ATP(0.36±0.04)pmol/mg in PCOS model mice were lower than those in non-POCS groups,while UCP2/GAPDH(1.18±0.28)and ROS(48810.92±4498.08)were lower than those in non-POCS groups.The fluorescence intensity of DCF was higher than that of the non-POCS group(P<0.05).AMPK was positively correlated with ATP and negatively correlated with ROS.UCP2 was positively correlated with ROS and negatively correlated with ATP.Conclusion:There are abnormal changes such as decreased AMPK expression and increased UCP2 expression in ovarian granulosa cells of PCOS,and AMPK is positively and negatively correlated with mitochondrial function indexes ATP and ROS,while UCP2 is the opposite,suggesting that the imbalance in the expression and activity of AMPK/UCP2 pathway in PCOS may be one of the molecular mechanisms leading to mitochondrial dysfunction.Regulation of AMPK/UCP2 pathway activity may be a potential therapeutic target to ameliorate PCOS-related mitochondrial dysfunction.