首页|阴性颞叶癫痫患者静息态脑功能连接网络特征融合策略的分析

阴性颞叶癫痫患者静息态脑功能连接网络特征融合策略的分析

扫码查看
静息态功能磁共振成像(rfMRI)的功能连接(FC)可为阴性颞叶癫痫提供脑功能异常指标,但冗余特征影响了精准性.为此,本研究提出结合特异性指数模型与判别相关分析(DCA)的特征融合策略以改善识别效果.将20位患者与20位健康人的rfMRI数据预处理后,以健康人为对照组,构建两类特异性指数模型以量化FC和脑网络FC;采用最小冗余最大相关(mRMR)及独立样本t检验去除冗余特征,应用DCA融合2类FC特异性指标;将融合特征分别输入到K近邻、支持向量机和逻辑回归分类器中,并以嵌套10次10折交叉验证与嵌套10次5折分层交叉验证的平均分类精度来评估算法有效性.结果表明,融合特征识别率达到了 91.25%~92.50%,高于非融合方案的识别水平.所提出的特征融合策略可有效地处理冗余信息,增强特征判别能力,为精准识别阴性颞叶癫痫提供了新思路.
Analysis of Feature Fusion Strategies of Resting-State Brain Functional Connectivity Network in Patients with Negative Temporal Lobe Epilepsy
Resting-state fMRI(rfMRI)can provide abnormal functional indicators by the functional connectivity(FC)analysis,however,the features redundancy would affect the classification precise.To address this issue,a feature fusion strategy combining specificity index model with discriminant correlation analysis(DCA)was proposed in this study to improve the identifying accuracy for patients with MRI-negative temporal lobe epilepsy.Firstly,the rfMRI data of 20 patients and 20 healthy people were preprocessed.Taking the healthy group as a control,two specificity index models were constructed by the conventional FC of pearson correlation and the network FC of graph theory.Secondly,both minimum redundancy maximum relevance(mRMR)and independent sample t test were used to eliminate redundant features,and DCA method was used to fuse feature.Finally,three machine-learning classifiers such as k-nearest neighbor(KNN),support vector machine(SVM)and logistic regression(LR)were used to validate our feature fusion method,and the nested stratification cross validations,such as 10 times 10 fold and 10 times 5 fold were used to evaluate the performance of three classifiers.The fusion feature of DC A could achieve the recognition rate of 91.25%~92.5%,higher than non-fusion strategies.In conclusion,the feature fusion strategy proposed in this paper could effectively deal with the redundant information and enhance feature discrimination.This work may provide new thoughts for the identification for MRI-negative temporal lobe epilepsy.

rfMRIMRI-negative temporal lobe epilepsybrain networkDCAmachine learning

王凯威、葛曼玲、王丽娜、程浩、赵小虎、陈盛华、张其锐

展开 >

河北工业大学生命科学与健康工程学院,天津 300130

河北工业大学省部共建电工装备可靠性与智能化国家重点实验室,天津 300130

河北工业大学河北省电磁场与电器可靠性重点实验室,天津 300130

赛诺医疗科学技术股份有限公司,天津 300130

中国人民解放军东部战区总医院医学影像科,南京 210002

展开 >

静息态功能磁共振成像 阴性颞叶癫痫 脑网络 判别相关分析 机器学习

河北省高等学校科学技术研究重点项目国家自然科学基金国家自然科学基金重大项目

ZD20210258187134581790653

2024

中国生物医学工程学报
中国生物医学工程学会

中国生物医学工程学报

CSTPCD北大核心
影响因子:0.614
ISSN:0258-8021
年,卷(期):2024.43(1)
  • 51