首页|结合贝叶斯推理和局部多项式拟合的增强区域增长算法在超声弹性成像中的应用

结合贝叶斯推理和局部多项式拟合的增强区域增长算法在超声弹性成像中的应用

扫码查看
超声应变弹性成像是一种非侵入性评估组织硬度的成像方式,临床上常用于乳腺、前列腺以及腹部器官的检查.位移跟踪是其中的重要环节,块匹配方法是位移跟踪的常用方法,但是在成像过程中因为探头超出平面的运动或者无关的生理运动导致信号去相关,常产生跳峰误差,导致这类方法产生的位移和应变图像质量较差.本研究提出一种将贝叶斯推理和局部位移拟合纳入区域增长运动估计框架中的运动跟踪算法(BRGMT-LPF)以解决上述问题.首先用最大后验概率值代替传统的互相关值,然后利用来自相邻匹配块的信息来正则化当前估计的位移,最后通过多项式拟合相邻位移值更新异常位移值获取最终位移.为验证本研究方法的有效性,评估本研究方法、区域生长运动跟踪算法(RGMT)、带局部多项式拟合的区域生长算法(RGMT-LPF)和仅带贝叶斯推理的区域生长算法(BRGMT)在计算机数字体模数据、在体数据上的追踪性能.结果表明,在通过有限元软件和FIELD Ⅱ模拟的10对超声数据上,BRGMT-LPF获得了最低的平均绝对误差(MAE)0.169 9(降低0.25%)和最高的对比度噪声比(CNR)1.162 5(提高4%);从经病理证实的乳腺肿瘤病人体内采集的16对在体数据上,BRGMT-LPF获得了最高的CNR,为1.50(最少提高0.37%)和最高的运动补偿互相关(MCCC)0.84(最少提高9.4%).本研究的初步结果表明,所提出的方法可用于提高超声弹性成像的图像质量以及基于位移的模量重建.
Augmented Region-Growing-Based Motion Tracking Using Bayesian Inference and Local Polynomial Fitting for Quasi-Static Ultrasound Elastography
Ultrasound elastography is a non-invasive imaging method for assessing tissue stiffness and has been used in clinics in the examination of breast,prostate,and abdominal organs.In ultrasound elastography,speckle tracking is a crucial step.The block matching method-based motion estimation and their variants(such as guided displacement tracking algorithm)are commonly used.However,it often introduces peak-hopping errors during the imaging process due to signal de-correlation caused by out-of-plane probe or unrelated physiological motion,resulting in poor quality of the estimated displacement and corresponding strain images generated by such methods.Based on the principle of tissue motion continuity,this study proposed a motion tracking algorithm(BRGMT-LPF)that incorporated Bayesian inference and local polynomial fitting(LPF)into a region-growing motion tracking(RGMT)framework.Firstly,the proposed approach replaced the traditional cross-correlation with the maximum posterior probability.Secondly,LPF was applied to remove and update the peak-hopping or wrong estimated displacement point.The proposed approach was compared with conventional RGMT algorithm,the RGMT with LPF,and the RGMT with Bayesian inference(BRGMT)on the computer-simulated and in vivo ultrasound data.Experimental results showed that on 10 pairs of ultrasound data simulated by finite element software and FIELD Ⅱ,BRGMT-LPF achieved the lowest average absolute error(MAE)of 0.1699(at least 0.25%reduction)and the highest contrast-to-noise ratio(CNR)of 1.1625(at least 4%increase).On 16 pairs of vector data collected from patients with pathologically confirmed breast tumors,BRGMT-LPF obtained the highest CNR of 1.50(at least 0.37%increase)and the highest motion compensation cross-correlation(MCCC)of 0.84(at least 9.4%increase).In conclusion,the proposed method could be used to improve the image quality of ultrasonic elastography and displacement-based modulus reconstruction.

Bayesian inferencelocal polynomialmotion trackingultrasound strain elastographybreast imaging

文烁杰、周竞宇、周文俊、姜劲枫、彭博

展开 >

西南石油大学计算机与软件学院,成都 610500

美国密歇根理工大学生物医学工程系,密歇根州霍顿市49931

贝叶斯推理 局部多项式 运动跟踪 超声应变弹性成像 乳腺成像

四川省科技厅应用基础研究项目四川省成都市科技局国际合作项目四川省南充市科技局市校合作项目四川省南充市科技局市校合作项目

2021YJ02482019-GH02-00040-HZSXQHJH046SXHZ019

2024

中国生物医学工程学报
中国生物医学工程学会

中国生物医学工程学报

CSTPCD北大核心
影响因子:0.614
ISSN:0258-8021
年,卷(期):2024.43(1)
  • 24