首页|基于神经影像和机器学习的大脑功能图谱构建方法综述

基于神经影像和机器学习的大脑功能图谱构建方法综述

扫码查看
脑图谱是包括大脑功能探索、神经和认知科学以及临床诊疗在内的脑科学研究的重要工具,其主要通过神经影像数据,利用机器学习方法进行构建,由此产生的分割模式是理解大脑组织和功能的基础,还可用于脑网络节点的定义,并有助于降低神经影像噪声对应用结果的影响.在脑图谱中,相比于结构图谱,功能图谱虽然起步较晚,但其具有更高的功能一致性,已在各类脑功能相关研究中得到了广泛关注和应用.为了揭示功能图谱的发展路径,在调研基于神经影像数据和机器学习所构建的脑功能图谱的种类和方法的基础上,首先将图谱按照皮层和体素、个体和群体以及影像模态等多重属性特征进行分类解读,展示各种图谱的详细信息;然后根据机器学习方法分别综述基于图聚类和基于时间序列聚类的脑图谱构建方法;最后对脑图谱研究领域所面临的挑战和将来可能的研究方向进行展望.
A Review of Methods for Constructing Brain Functional Atlas Based on Neuroimaging Data and Machine Learning
Brain atlas is an important tool in brain science research,including brain function exploration,neuroscience and cognitive science,and clinical diagnosis and treatment,which can be constructed using machine learning based on neuroimaging data.The parcellation patterns generated by brain atlas provide the foundation for understanding brain structure and function,and are frequently used for defining nodes in brain networks to reduce the impact of imaging noise on analysis results.Compared to structural atlases,functional atlases have a later development but demonstrate higher functional consistency,gradually gaining widespread attention and application in various brain function-related studies.In order to reveal the development path of functional atlases,based on the investigation of different types and methods of brain functional atlases constructed using neuroimaging data and machine learning,this article first classified and summarized the atlases according to multiple attribute features such as cortical surface and voxel,individual and population,and imaging modalities,providing detailed information for each atlas.After that,according to machine learning methods,we reviewed the construction methods of brain atlases based on graph clustering and time series clustering separately.Finally,we outlined the challenges faced in the field of brain atlas research and prospects for future research directions.

brain functional atlasmagnetic resonance imagebrain networkmachine learningclustering

杨梦婷、张道强、温旭云

展开 >

南京航空航天大学计算机科学与技术学院,南京 211106

脑功能图谱 磁共振成像 脑网络 机器学习 聚类

国家自然科学基金中国博士后科学基金中国博士后科学基金南京航空航天大学科研与实践创新计划

620012222021TQ01502021M701699xcxjh20221604

2024

中国生物医学工程学报
中国生物医学工程学会

中国生物医学工程学报

CSTPCD北大核心
影响因子:0.614
ISSN:0258-8021
年,卷(期):2024.43(1)
  • 117