首页|基于条带池化与血管增强的眼底图像动静脉分类方法

基于条带池化与血管增强的眼底图像动静脉分类方法

扫码查看
视网膜血管动静脉管径比是定量分析糖尿病、高血压等慢性疾病的先决条件,是许多心血管疾病的重要风险指标。随着深度学习技术的发展,许多基于卷积神经网络的方法凭借其捕获高级语义的能力,在眼底图像动静脉分类方面取得了较大的进展。然而,这些方法大多是采用叠加局部卷积和池化操作方式,难以很好地应用于条带形状的眼底视网膜血管。在本研究中,为了更有效地提取条带形状的视网膜血管特征,引入条带池化来捕获空间像素远距离依赖关系,同时考虑到动静脉交错复杂的特性,结合空间金字塔池化并提出了一种全新的混合池化技术以扩大神经网络的感受野和学习上下文信息。另一方面,考虑到眼底图像中血管与非血管分布的比例极不平衡,引入了血管增强模块,利用血管分布信息和高斯核函数约束的血管边缘的信息作为权重校正动静脉特征抑制背景特征,进而解决血管与背景分布比例不平衡问题。在分别包含40、22、45张彩色眼底图像的3种国际公开数据集DRIVE、LES和HRF上的实验表明,所提算法的平衡精度(BACC)分别为0。955、0。946、0。967,表明本研究结合条带池化与血管增强的方法能够较好解决眼底图像中动静脉交错复杂和类别不平衡问题,实现对眼底视网膜动静脉的精确分类,具有较高的应用价值。
Stripe Pooling and Vessel-Constraint Network for Fundus Image Artery/Vein Classification
The ratio of retinal artery to vein diameter is a prerequisite for quantitative analysis of chronic diseases,such as diabetes and hypertension,and is an important risk indicator for many cardiovascular diseases.With the development of deep learning technology,many methods based on convolution neural network have made great progress in the classification of fundus images based on their ability to capture high-level semantics.However,most of the methods are based on superimposed local convolution and pooling operation,which is difficult to be well applied to striped retinal blood vessel segmentation.In this paper,in order to extract the features of retinal blood vessels in the shape of stripes more effectively,we introduced stripe pooling to capture the long-distance dependence of spatial pixels.Taking into account the complex characteristics of arteriovenous interleaving and further combining with spatial pyramid pooling,a new mixed pooling technology was proposed to expand the receptive field and learning context information of the neural network.On the other hand,considering that the proportion of blood vessel and non-blood vessel distribution in the fundus image is extremely unbalanced,this paper introduced a blood vessel enhancement module,which used the information of blood vessel distribution and the information of blood vessel edge constrained by Gaussian kernel function as weights to correct the arteriovenous features and suppress the background features,thus solving the problem of the imbalance between blood vessel and background distribution.Experiments on three internationally available datasets,DRIVE,LES,and HRF,containing 40,22,and 45 color fundus images respectively,showed that the proposed algorithm achieved results of 0.955,0.946,and 0.967 in term of BACC scores,which verified that the method combining strip pooling and vascular enhancement effectively solved the problems of complex arteriovenous interlacing and category imbalance in fundus images,achieving accurate classification of retinal arteriovenous malformations,holding a high application value.

fundus imagesartery/vein classificationstripe poolingmixed poolingvessel enhancement

肖志涛、彭新文、刘彦北、耿磊、张芳、王雯

展开 >

天津工业大学生命科学学院,天津 300386

天津工业大学控制科学与工程学院,天津 300386

眼底图像 动静脉分类 条带池化 混合池化 血管增强

京津冀基础研究合作专项

H2021202008

2024

中国生物医学工程学报
中国生物医学工程学会

中国生物医学工程学报

CSTPCD北大核心
影响因子:0.614
ISSN:0258-8021
年,卷(期):2024.43(4)