首页|基于Transformer深度学习模型在医学图像分割中的研究进展

基于Transformer深度学习模型在医学图像分割中的研究进展

扫码查看
医学图像的准确分割在现代临床影像检查、精准诊断和治疗规划中意义至关重要。近10年来,卷积神经网络(CNN)凭借其独特的特征提取能力,在医学图像分割领域成绩显著。CNN架构中存在的局部感受野和固有归纳偏置局限,限制其对图像中远程依赖关系的有效建模。近年来,Transformer架构依赖其对全局信息的捕获能力,有助于建模长距离的依赖关系并挖掘语义信息,在生物医学图像分割领域展示出卓越的性能和巨大潜力。在此,对Transformer架构的组成及其在医学图像分割中的应用进行了全面综述,从全监督、无监督和半监督的角度出发,对Transformer架构在医学图像的腹部多器官分割、心脏分割和脑肿瘤分割中的运用价值及性能进行了归纳分析,并对Transformer模型在分割任务中存在的局限不足进行了概括总结,最后对其未来发展趋势及优化路径进行了探讨展望。
Research Progress on Transformer-Based Deep Learning Models for Medical Image Segmentation
Accurate segmentation of medical images is a crucial step in clinical diagnosis and treatment.Over the past decade,convolutional neural network(CNN)has been widely applied in the field of medical image segmentation and have achieved excellent segmentation performance.However,the inherent inductive bias in CNN architectures limits their ability to model long-range dependencies in images.In contrast,the Transformer architectures,which focus on global information and the ability to model long-range dependencies,has been demonstrated outstanding performance in biomedical image segmentation.This review introduced the components of Transformer architecture and its applications in medical image segmentation.From perspectives of fully supervised,unsupervised and semi-supervised learning,application values and performances of Transformer architectures in abdominal multi-organ segmentation,cardiac segmentation and brain tumor segmentation were summarized and analyzed.Finally,limitations of Transformer model in segmentation tasks and future optimizations were prospected.

Transformerimage segmentationconvolutional neural networkmedical image

周腊珍、陈红池、李秋霞、李坊佐

展开 >

赣南医科大学医学信息工程学院,江西 赣州 341000

赣南医科大学,心脑血管疾病防治教育部重点实验室,江西赣州 341000

Transformer 图像分割 卷积神经网络 医学图像

国家自然科学基金江西省自然科学基金赣南医科大学科研启动基金

1186500320224BAB201020QD201805

2024

中国生物医学工程学报
中国生物医学工程学会

中国生物医学工程学报

CSTPCD北大核心
影响因子:0.614
ISSN:0258-8021
年,卷(期):2024.43(4)