首页|基于交叉协同注意力网络的小样本肠道息肉图像语义分割

基于交叉协同注意力网络的小样本肠道息肉图像语义分割

Semantic segmentation of few-shot intestinal polyp images based on cross-cooperative attention network

扫码查看
目的:提高肠道息肉图像语义分割模型对查询图片中未知目标的分割性能.方法:提出一种基于交叉协同注意力网络的小样本肠道息肉图像语义分割方法.首先,利用预训练的VGG-16网络提取支持图片和查询图片的视觉特征;然后,利用支持特征和查询特征建立分支间特征的交叉融合,促进分支间特征语义的对齐;最后,利用无参数的度量方法,逐像素实现查询图片中每一位置的像素分类.结果:在Kvasir-SEG等4个开源的肠道息肉图像数据集中,本研究所提出方法的前景背景交并比(FB-IoU)分值均优于经典的医学图像语义分割模型U-Net.结论:基于交叉协同注意力网络的小样本肠道息肉图像语义分割方法可以精准定位支持图片和查询图片中的息肉区域,具有较好的分割性能.
Objective To improve the segmentation performance of the intestinal polyp images semantic segmentation model for unknown objects in the query images.Methods A semantic segmentation method for few-shot intestinal polyp images based on cross-cooperative attention network was proposed.Firstly,the pre-trained VGG-16 network was used to extract the visual features of supporting and query images.Then,the cross-integration of inter-branch features was established by using support features and query features to promote the semantic alignment of inter-branch features.Finally,the pixel-by-pixel classification of each position in the query image was realized by using the non-parametric measurement method.Results In Kvasir-SEG and three other open-source intestinal polyp image datasets,the proposed method achieved superior FB-IoU scores compared to that of U-net,a classical semantic segmentation model for medical images.Conclusion The semantic segmentation method of few-shot intestinal polyp images based on the cross-cooperative attention network can accurately locate the polyp region in the supporting images and query images,demonstrating good segmentation performance.

Intestinal polypImage semantic segmentationCross-cooperative attention networkSemantic alignment

张浩、曹磊、马利亚

展开 >

750001 银川,宁夏医科大学总医院信息中心

肠道息肉 图像语义分割 交叉协同注意力网络 语义对齐

2025

中国数字医学
卫生部医院管理研究所

中国数字医学

影响因子:0.692
ISSN:1673-7571
年,卷(期):2025.20(1)