基于耐火极限的发泡陶瓷配方体系研究
Research on Foamed Ceramic Formula System Based on Refractory Limits
钟路生 1刘文婵 1马镇耀 1刘文涛 1王哲 1张鑫 1武文权2
作者信息
- 1. 科达制造股份有限公司,佛山 528313
- 2. 佛山市德力泰科技有限公司,佛山 528137
- 折叠
摘要
常规的发泡陶瓷多孔并且闭孔多,具有保温隔热、防水防潮、隔音降噪轻质以及高强等优点.正因为闭孔泡多,在失火状态下,封闭气泡膨胀炸裂的可能性增加,从而影响其耐火性能.就发泡陶瓷耐火极限问题,通过优化发泡陶瓷配方体系,形成非对称发泡孔径、增加壁厚以及提高发泡坯体始熔温度,使得发泡陶瓷的耐火极限从1.2 h,提高到了3.6 h.
Abstract
Conventional foamed ceramics are porous and predominantly closed cells. They have the advantages of thermal insulation,waterproof and moisture-proof,sound insulation and noise reduction,and lightweight high strength. However,due to the many closed cells,the possibility of enclosed bubbles expanding and bursting during a fire increases,thereby affecting their refractory performance. This article focuses on the issue of the refractory limits of foamed ceramics. By optimizing the formula system of foamed ceramics,forming asymmetric foaming pore diameters,increasing wall thickness,and increasing the initial melting temperature of the foamed body,which enhances the refractory limit of the foaming ceramics from 1.2 hours to 3.6 hours. The research results have obtained authorized invention patents.
关键词
发泡陶瓷/耐火极限/非对称发泡理论Key words
Foamed ceramics/Refractory limit/Asymmetric foaming theory引用本文复制引用
出版年
2024