首页|面向钢坯表面修磨的缺陷智能检测方法研究

面向钢坯表面修磨的缺陷智能检测方法研究

扫码查看
钢坯表面缺陷是影响钢坯强度和韧性的重要因素之一,而对钢坯表面进行有效修磨是消除质量问题的关键步骤.传统整料修磨方法存在修磨不充分、不精细和人工辅助打磨效率低等问题,因此迫切需要引入智能缺陷检测技术,通过人工智能方法精准定位表面缺陷位置以引导修磨机定点修磨,来最终提高修磨的自动化水平.针对当前存在的问题,本研究提出了一种面向钢坯表面修磨的缺陷智能检测方法.采用基于Yolo的目标检测模型,并针对修磨机运动原理,设计缺陷区域聚合方法,最终提高了缺陷检测准确性和修磨效率,为钢坯表面修磨提供了先进的智能技术支撑.
Research on intelligent detection methods for defects in surface grinding of steel billets
The surface defect of billet is one of the important factors affecting the strength and toughness of billets,and effective grinding of billet surface is a key step to eliminate quality issues.Traditional rough grinding methods suffer from insufficient and coarse grinding,low efficiency of manually assisted grinding.Therefore,it is urgent to introduce intelligent defect detection technology to accurately locate the locations of surface defects using artificial intelligence methods to guide the fixed-point grinding by a grinding mill,and thereby improving the automation level of grinding.In response to the current problems,this study proposes an intelligent defect detection method for billet surface grinding,which uses a YOLO-based tar-get detection model and designs a defect region aggregation method according to the motion principle of the grinding mill.This ultimately improves the accuracy of defect detection and grinding efficiency,providing advanced intelligent technology support for billet surface grinding.

billet surface defect detectiondefect region aggregationdeep learning

严俊华、段智峰、马博渊、周鹏

展开 >

湘潭钢铁集团有限公司,湘潭 411101

北京科技大学北京材料基因工程高精尖创新中心,北京 100083

北京科技大学计算机与通信工程学院,北京 100083

北京科技大学智能科学技术学院,北京 100083

北京科技大学智能仿生无人系统教育部重点实验室,北京 100083

展开 >

缺陷检测 缺陷区域聚合 深度学习

国家自然科学基金

62106019

2024

中国体视学与图像分析
中国体视学学会

中国体视学与图像分析

影响因子:0.293
ISSN:1007-1482
年,卷(期):2024.29(1)
  • 20