首页|基于RMAU-Net的DBT图像肿块自动分割方法

基于RMAU-Net的DBT图像肿块自动分割方法

扫码查看
准确的乳腺肿块分割对于早期乳腺癌的诊断和治疗具有重要的意义.目前数字乳腺断层摄影(DBT)已广泛应用于乳腺癌的检查诊断,具有较高的病变检出率.但是DBT图像中乳腺致密度较高、对比差异度较低,使得乳腺肿块的自动分割更具挑战性.为了高效、准确的对DBT图像中的肿块进行分割,本文提出了一种残差多注意U形分割网络(RMAU-Net),利用残差结构避免了梯度消失而导致的模型性能下降.同时,在网络中采用深层注意特征融合模块和多路径深层特征融合模块,提高了网络的特征提取能力以及对可疑区域边界的识别能力.RMAU-Net在一个私有的DBT图像数据集(DBT_SZ)中对乳腺肿块进行分割,Dice达到86.77%,敏感性达到87.84%、IOU达到80.15%.此外,本文还将RMAU-Net与一些先进的分割网络进行了比较,实验结果表明,RMAU-Net可以提取到更精确的乳腺肿块边缘,提高了分割精度.
Automatic segmentation of breast masses in DBT images based on RMAU-Net
Accurate breast mass segmentation is important for the diagnosis and treatment of early breast cancer.Digital breast tomosynthesis(DBT)has been widely used for breast cancer screening with a high detection rate for lesions.However,the high breast densities and low contrast in DBT images make the au-tomatic segmentation of breast masses very challenging.In order to efficiently and accurately segment the masses in DBT images,this paper proposes a residual multi-attention U-shaped segmentation network(RMAU-Net),which utilizes a residual structure to avoid performance degradation caused by gradient vanishing.Meanwhile,a deep attention feature fusion module and a multipath high-level feature fusion module are used in the network to improve the feature extraction ability of the network as well as the abili-ty to recognize the boundary of suspicious regions.The RMAU-Net performs segmentationon a private DBT image dataset(DBT_SZ)and achieves a Dice of 86.77%,a sensitivity of 87.84%,and an IOU of 80.15%.In addition,this paper compares RMAU-Net with some advanced segmentation networks.Ex-perimental results show that RMAU-Net can extract mass edges more accurately so that improve the seg-mentation accuracy.

breast mass segmentationdigital breast tomosynthesis imagesdeep learningresidual structureattention mechanism

茅瑜、孙浩天、吴俊、郑健

展开 >

扬州大学信息工程学院,扬州 225127

中国科学院苏州生物医学工程技术研究所,苏州 215163

乳腺肿块分割 数字乳腺断层摄影图像 深度学习 残差结构 注意力机制

国家自然科学基金苏州市基础研究计划

62371449SJC2021023

2024

中国体视学与图像分析
中国体视学学会

中国体视学与图像分析

影响因子:0.293
ISSN:1007-1482
年,卷(期):2024.29(2)