首页|CGAN样本生成的遥感图像飞机识别

CGAN样本生成的遥感图像飞机识别

Aircraft recognition of remote sensing image based on sample generated by CGAN

扫码查看
目的 基于深度学习的飞机目标识别方法在遥感图像解译领域取得了很大进步,但其泛化能力依赖于大规模数据集.条件生成对抗网络(conditional generative adversarial network,CGAN)可用于产生逼真的生成样本以扩充真实数据集,但对复杂遥感场景的建模能力有限,生成样本质量低.针对这些问题,提出了一种结合CGAN样本生成的飞机识别框架.方法 改进条件生成对抗网络,利用感知损失提高生成器对遥感图像的建模能力,提出了基于掩膜的结构相似性(structural similarity,SSIM)度量损失函数(masked-SSIM loss)以提高生成样本中飞机区域的图像质量,该损失函数与飞机的掩膜相结合以保证只作用于图像中的飞机区域而不影响背景区域.选取一个基于残差网络的识别模型,与改进后的生成模型结合,构成飞机识别框架,训练过程中利用生成样本代替真实的卫星图像,降低了对实际卫星数据规模的需求.结果 采用生成样本与真实样本训练的识别模型在真实样本上的进行实验,前者的准确率比后者低0.33%;对于生成模型,在加入感知损失后,生成样本的峰值信噪比(peak signal to noise ratio,PSNR)提高了0.79 dB,SSIM提高了0.094;在加入基于掩膜的结构相似性度量损失函数后,生成样本的PSNR提高了0.09 dB,SSIM提高了0.252.结论 本文提出的基于样本生成的飞机识别框架生成了质量更高的样本,这些样本可以替代真实样本对识别模型进行训练,有效地解决了飞机识别任务中的样本不足问题.

王耀领、王宏琦、许滔

展开 >

中国科学院空天信息创新研究院,北京100190

中国科学院大学电子电气与通信工程学院,北京100049

中国科学院大学,北京100049

中国科学院空天信息创新研究院网络信息体系技术重点实验室,北京100190

展开 >

深度学习 卷积神经网络 生成对抗网络 光学遥感图像 目标识别

国家自然科学基金

41701508

2021

中国图象图形学报
中国科学院遥感应用研究所,中国图象图形学学会 ,北京应用物理与计算数学研究所

中国图象图形学报

CSTPCDCSCD北大核心
影响因子:1.111
ISSN:1006-8961
年,卷(期):2021.26(3)
  • 3
  • 19