首页|LBP特征分类的极化SAR图像机场跑道检测

LBP特征分类的极化SAR图像机场跑道检测

Airport runway detection based on LBP feature classification in PolSAR images

扫码查看
目的 在极化合成孔径雷达(synthetic aperture radar,SAR)图像中常用直线检测进行机场跑道的识别,但是河流、道路等与机场跑道具有相似直线的地物容易对检测结果造成干扰,出现检测目标难定位、目标模糊、多虚警等问题.为此,本文设计了一种利用目标散射特性结合局部二值模式(local binary patterns,LBP)特征分类的极化SAR图像机场跑道区域检测方法,采用LBP特征对极化SAR图像进行有监督的分类来提取真实的机场区域.方法 首先利用异化散射功率对极化SAR图像进行阈值分割,然后通过形态学处理得到疑似机场跑道区域,同时构建机场跑道和非机场跑道两类训练样本,并提取、统计样本的LBP特征,形成直方图,得到特征向量训练支持向量机(support vector machine,SVM)二分类器,其中SVM二分类器采用了径向基函数(radial basis function,RBF)核函数;接着对疑似机场跑道区域构建LBP特征,送入SVM二分类器中分类,对机场跑道进行检测识别,最终得到真实的机场跑道区域.结果 利用UAVSAR (uninhabited aerial vehicle synthetic aperture radar)系统采集的7幅极化SAR图像数据进行实验检测,并选取基于几何特征辨识跑道的两种算法进行对比,3种方法均有效检测出了7幅场景中的真实跑道,但是本文方法在7幅数据中总的虚警和漏警个数均为1,而两种对比算法中的虚警个数分别为2和11、漏警个数分别为8和1.结论 本文方法不仅能有效检测出机场跑道区域,且检测效果更好,计算量较小,虚警和漏警率低,效率更高.

韩萍、万义爽、刘亚芳、韩宾宾

展开 >

中国民航大学天津市智能信号与图像处理重点实验室,天津300300

极化合成孔径雷达(PolSAR)图像 机场跑道检测 局部二值模式(LBP)特征 支持向量机(SVM)分类 阈值分割

国家重点研发计划项目中央高校基本科研业务费专项资金项目

2016YFB05024053122019110

2021

中国图象图形学报
中国科学院遥感应用研究所,中国图象图形学学会 ,北京应用物理与计算数学研究所

中国图象图形学报

CSTPCDCSCD北大核心
影响因子:1.111
ISSN:1006-8961
年,卷(期):2021.26(4)
  • 2
  • 9