首页|类别语义相似性监督的小样本图像识别

类别语义相似性监督的小样本图像识别

Few shot image recognition based on class semantic similarity supervision

扫码查看
目的 现有的深度学习模型往往需要大规模的训练数据,而小样本分类旨在识别只有少量带标签样本的目标类别.作为目前小样本学习的主流方法,基于度量的元学习方法在训练阶段大多没有使用小样本目标类的样本,导致这些模型的特征表示不能很好地泛化到目标类.为了提高基于元学习的小样本图像识别方法的泛化能力,本文提出了基于类别语义相似性监督的小样本图像识别方法.方法 采用经典的词嵌入模型GloVe(global vectors for word representation)学习得到图像数据集每个类别英文名称的词嵌入向量,利用类别词嵌入向量之间的余弦距离表示类别语义相似度.通过把类别之间的语义相关性作为先验知识进行整合,在模型训练阶段引入类别之间的语义相似性度量作为额外的监督信息,训练一个更具类别样本特征约束能力和泛化能力的特征表示.结果 在miniImageNet和tieredImageNet两个小样本学习基准数据集上进行了大量实验,验证提出方法的有效性.结果显示在miniImageNet数据集5-way 1-shot和5-way 5-shot设置上,提出的方法相比原型网络(prototypical networks)分类准确率分别提高1.9%和0.32%;在tieredImageNet数据集5-way 1-shot设置上,分类准确率相比原型网络提高0.33%.结论 提出基于类别语义相似性监督的小样本图像识别模型,提高小样本学习方法的泛化能力,提高小样本图像识别的准确率.

徐鹏帮、桑基韬、路冬媛

展开 >

北京交通大学计算机与信息技术学院,北京 100044

对外经济贸易大学信息学院,北京 100029

小样本学习 图像识别 特征表示 类别语义相似性监督 泛化能力

2020JBM0162018JBZ0062019JBZ1106183200261672518JQ2002317YQ21

2021

中国图象图形学报
中国科学院遥感应用研究所,中国图象图形学学会 ,北京应用物理与计算数学研究所

中国图象图形学报

CSTPCDCSCD北大核心
影响因子:1.111
ISSN:1006-8961
年,卷(期):2021.26(7)
  • 4
  • 21