首页|图像分解与色彩先验下的多曝光图像融合

图像分解与色彩先验下的多曝光图像融合

Multi-exposure image fusion based on image decomposition and color prior

扫码查看
目的 多曝光图像融合(multi-exposure fusion,MEF)是利用一组不同曝光度的低动态范围(low dynamic range,LDR)图像进行合成,得到类似高动态范围(high dynamic range,HDR)图像视觉效果图像的过程.传统多曝光图像融合在一定程度上存在图像细节信息受损、边界不清晰以及部分色彩失真等问题.为了充分综合待融合图像的有效信息,提出了一种基于图像分解和色彩先验的双尺度多曝光图像融合方法.方法 使用快速导向滤波进行图像分解,分离出细节层对其进行增强处理,保留更多的细节信息,同时减少融合图像的光晕伪影;根据色彩先验,利用亮度和饱和度之差判断图像曝光程度,并联合亮度与饱和度之差以及图像对比度计算多曝光图像融合权重,同时保障融合图像的亮度和对比度;利用导向滤波对权重图进行优化,抑制噪声,增加像素之间的相关性,提升融合图像的视觉效果.结果 在24组多曝光图像序列上进行实验,从主观评价角度来看,该融合方法能够提升图像整体对比度及色彩饱和度,并兼顾过曝光区域和欠曝光区域的细节提升.从客观评价标准分析,采用两种不同的多曝光图像序列融合结果的质量评估算法,评价结果显示融合性能均有所提高,对应的指标均值分别为0.982和0.970.与其他对比算法的数据结果比较,在两种不同的结构相似性指标上均有所提升,平均提升分别为1.2%和1.1%.结论 通过主观和客观评价,证实了所提方法在图像对比度、色彩饱和度以及细节信息保留的处理效果十分显著,具有良好的融合性能.

李嫄源、王琴、朱智勤、齐观秋

展开 >

重庆邮电大学计算机科学与技术学院,重庆 400065

重庆邮电大学自动化学院,重庆 400065

纽约州立大学布法罗分校计算机信息系统学院,纽约 14222

多曝光图像融合(MEF) 高动态范围成像 导向滤波 快速导向滤波 色彩先验

国家自然科学基金国家自然科学基金国家自然科学基金重庆教委科技项目

619060266180306151705056KJQN201800603

2021

中国图象图形学报
中国科学院遥感应用研究所,中国图象图形学学会 ,北京应用物理与计算数学研究所

中国图象图形学报

CSTPCDCSCD北大核心
影响因子:1.111
ISSN:1006-8961
年,卷(期):2021.26(12)
  • 3
  • 23