首页|融合环境特征与改进YOLOv4的安全帽佩戴检测

融合环境特征与改进YOLOv4的安全帽佩戴检测

Safety helmet wearing detection method of fusing environmental features and improved YOLOv4

扫码查看
目的 在施工现场,安全帽是最为常见和实用的个人防护用具,能够有效防止和减轻意外带来的头部伤害.但在施工现场的安全帽佩戴检测任务中,经常出现难以检测到小目标,或因为复杂多变的环境因素导致检测准确率降低等情况.针对这些问题,提出一种融合环境特征与改进YOLOv4(you only look once version 4)的安全帽佩戴检测方法.方法 为补充卷积池化等过程中丢失的特征,在保证YOLOv4得到的3种不同大小的输出特征图与原图经过特征提取得到的特征图感受野一致的情况下,将两者相加,融合高低层特征,捕捉更多细节信息;对融合后的特征图采用3×3卷积操作,以减小特征图融合后的混叠效应,保证特征稳定性;为适应施工现场的各种环境,利用多种数据增强方式进行环境模拟,并采用对抗训练方法增强模型的泛化能力和鲁棒性.结果 提出的改进YOLOv4方法在开源安全帽佩戴检测数据集(safety helmet wearing dataset,SHWD)上进行测试,平均精度均值(mean average precision,mAP)达到91.55%,较当前流行的几种目标检测算法性能有所提升,其中相比于YOLOv4,mAP提高了5.2%.此外,改进YOLOv4方法在融合环境特征进行数据增强后,mAP提高了4.27%,在各种真实环境条件下进行测试时都有较稳定的表现.结论 提出的融合环境特征与改进YOLOv4的安全帽佩戴检测方法,以改进模型和数据增强的方式提升模型准确率、泛化能力和鲁棒性,为安全帽佩戴检测提供了有效保障.

葛青青、张智杰、袁珑、李秀梅、孙军梅

展开 >

杭州师范大学信息科学与技术学院,杭州 311121

安全帽佩戴检测 特征图融合 数据增强 对抗样本 YOLOv4

国家自然科学基金福建省软件测评工程技术研究中心开放课题杭州市科技计划

61571174ST201900420201203B124

2021

中国图象图形学报
中国科学院遥感应用研究所,中国图象图形学学会 ,北京应用物理与计算数学研究所

中国图象图形学报

CSTPCDCSCD北大核心
影响因子:1.111
ISSN:1006-8961
年,卷(期):2021.26(12)
  • 14
  • 5