首页|基于特征选择与残差融合的肝肿瘤分割模型

基于特征选择与残差融合的肝肿瘤分割模型

扫码查看
目的 高效的肝肿瘤计算机断层扫描(computed tomography,CT)图像自动分割方法是临床实践的迫切需求,但由于肝肿瘤边界不清晰、体积相对较小且位置无规律,要求分割模型能够细致准确地发掘类间差异.对此,本文提出一种基于特征选择与残差融合的2D肝肿瘤分割模型,提高了2D模型在肝肿瘤分割任务中的表现.方法 该模型通过注意力机制对U-Net瓶颈特征及跳跃链接进行优化,为符合肝肿瘤分割任务特点优化传统注意力模块进,提出以全局特征压缩操作(global feature squeeze,GFS)为基础的瓶颈特征选择模块,即全局特征选择模块(fea-ture selection module,FS)和邻近特征选择模块(neighbor feature selection module,NFS).跳跃链接先通过空间注意力模块(spatial attention module,SAM)进行特征重标定,再通过空间特征残差融合(spatial feature residual fusion module,SFRF)模块解决前后空间特征的语义不匹配问题,在保持低复杂度的同时使特征高效表达.结果 在LiTS(liver tumor segmentation)公开数据集上进行组件消融测试并与当前方法进行对比测试,在肝脏及肝肿瘤分割任务中的平均Dice得分分别为96.2%和68.4%,与部分2.5D和3D模型的效果相当,比当前最佳的2D肝肿瘤分割模型平均Dice得分高0.8%.结论 提出的FSF-U-Net(feature selection and residual fusion U-Net)模型通过改进的注意力机制与优化U-Net模型结构的方法,使2D肝肿瘤分割的结果更加准确.
Feature selection and residual fusion segmentation network for liver tumor

乔伟晨、黄冕、刘利军、黄青松

展开 >

昆明理工大学信息工程与自动化学院,昆明 650500

云南国土资源职业学院信息中心,昆明 652501

云南大学信息学院, 昆明 650091

云南省计算机技术应用重点实验室,昆明 650500

展开 >

肝肿瘤自动分割 注意力机制 U-Net结构 特征选择 残差融合

国家自然科学基金国家自然科学基金云南省计算机技术应用重点实验室开放基金

81860318815602962020106

2022

中国图象图形学报
中国科学院遥感应用研究所,中国图象图形学学会 ,北京应用物理与计算数学研究所

中国图象图形学报

CSTPCDCSCD北大核心
影响因子:1.111
ISSN:1006-8961
年,卷(期):2022.27(3)
  • 2
  • 2