首页|结合目标检测与匹配修正的手腕骨兴趣区域提取

结合目标检测与匹配修正的手腕骨兴趣区域提取

扫码查看
目的 在骨龄智能评估研究中,如何准确地提取手腕参照骨的兴趣区域(region of interest,ROI)是保证骨龄精确评估的关键.基于传统深度学习的方法用于手腕骨ROI提取,存在个别参照骨漏判、误判等情况,导致平均提取准确率较低.本文结合目标检测强大的定位和识别能力,以准确提取所有手腕骨ROI为目的,提出了一种参照骨自动匹配与修正方法.方法 针对不同参照骨形状、位置等特征表现出的规律性和关联性,本文采集了大量不同性别、不同年龄段的人手腕图谱作为参照骨样本匹配,然后分多个阶段提取参照骨ROI:1)基于目标检测算法初步提取出所有参照骨候选ROI,并根据一定的阈值剔除置信度较低的区域;2)结合参照骨的大数据样本构建位置点匹配模型,对剔除区域进行自动匹配与填补,保证ROI提取的完整性;3)通过多尺度滑动窗口以及ROI分类模型,对填补得到的ROI位置进行滑动修正,进一步保证提取准确率.结果 实验结果表明,本文结合目标检测与匹配修正的方法优于现有绝大多数方法.其中,匹配修正方法在目标检测算法的提取结果基础上,提升了约1.42%的平均准确率,当结合Faster R-CNN(region-convolutional neural network)算法时能达到最高98.45%的交并比(intersec-tion-over-union,IoU)准确率.结论 本文方法利用手腕骨的位置特征,对个别提取困难的参照骨类型进行重新匹配与修正,有效地弥补了传统方法泛化能力不足的缺点.本文方法能够同时面向人手腕中所有参照骨ROI提取,具备良好的扩展性和易操作性.
Hand-wrist region of interest extraction based on object detection and matching correction

毛科技、汪敏豪、陈立建、陆伟、武坤秀、陈庆章、赵小敏

展开 >

浙江工业大学计算机科学与技术学院, 杭州 310023

浙江广播电视大学萧山学院, 杭州 312000

兴趣区域(ROI) 目标检测 位置匹配 大数据 滑动窗口

国家自然科学基金浙江省重点研发计划浙江省公益性技术应用研究项目浙江省公益性技术应用研究项目

620724102018C01082LGG22F020014LGG20F020018

2022

中国图象图形学报
中国科学院遥感应用研究所,中国图象图形学学会 ,北京应用物理与计算数学研究所

中国图象图形学报

CSTPCDCSCD北大核心
影响因子:1.111
ISSN:1006-8961
年,卷(期):2022.27(3)
  • 2
  • 13