首页|多尺度渐进式残差网络的图像去雨

多尺度渐进式残差网络的图像去雨

扫码查看
目的 现有的去雨方法存在去雨不彻底和去雨后图像结构信息丢失等问题.针对这些问题,提出多尺度渐进式残差网络(multi scale progressive residual network,MSPRNet)的单幅图像去雨方法.方法 提出的多尺度渐进式残差网络通过3个不同感受野的子网络进行逐步去雨.将有雨图像通过具有较大感受野的初步去雨子网络去除图像中的大尺度雨痕.通过残留雨痕去除子网络进一步去除残留的雨痕.将中间去雨结果输入图像恢复子网络,通过这种渐进式网络逐步恢复去雨过程中损失的图像结构信息.为了充分利用残差网络的残差分支上包含的重要信息,提出了一种改进残差网络模块,并在每个子网络中引入注意力机制来指导改进残差网络模块去雨.结果 在5个数据集上与最新的8种方法进行对比实验,相较于其他方法中性能第1的模型,本文算法在5个数据集上分别获得了0.018、0.028、0.012、0.007和0.07的结构相似度(structural similarity,SSIM)增益.同时在Rain100L数据集上进行了消融实验,实验结果表明,每个子网络的缺失都会造成去雨性能的下降,提出的多尺度渐进式网络算法能够有效去除各种雨痕.结论 提出的算法能够获得最高的客观评价指标值和最优的视觉效果.在有效解决雨痕重叠问题的同时能够更好地保持图像的细节信息.
Single image rain removal based on multi scale progressive residual network

卢贝、盖杉

展开 >

南昌航空大学信息工程学院,南昌 330063

江西省图像处理与模式识别重点实验室,南昌 330063

单幅图像去雨 深度学习 卷积神经网络(CNN) 残差网络 注意力机制

国家自然科学基金江西省杰出青年基金江西省自然科学基金南昌航空大学研究生创新基金

6206103220192ACB2103220202BABL202038YC2020-036

2022

中国图象图形学报
中国科学院遥感应用研究所,中国图象图形学学会 ,北京应用物理与计算数学研究所

中国图象图形学报

CSTPCDCSCD北大核心
影响因子:1.111
ISSN:1006-8961
年,卷(期):2022.27(5)
  • 3
  • 2