首页|小样本条件下的RGB-D显著性物体检测

小样本条件下的RGB-D显著性物体检测

扫码查看
目的 现有基于RGB-D(RGB-depth)的显著性物体检测方法往往通过全监督方式在一个较小的RGB-D训练集上进行训练,因此其泛化性能受到较大的局限.受小样本学习方法的启发,本文将RGB-D显著性物体检测视为小样本问题,利用模型解空间优化和训练样本扩充两类小样本学习方法,探究并解决小样本条件下的RGB-D显著性物体检测.方法 模型解空间优化通过对RGB和RGB-D显著性物体检测这两种任务进行多任务学习,并采用模型参数共享的方式约束模型的解空间,从而将额外的RGB显著性物体检测任务学习到的知识迁移至RGB-D显著性物体检测任务中.另外,训练样本扩充通过深度估计算法从额外的RGB数据生成相应的深度图,并将RGB图像和所生成的深度图用于RGB-D显著性物体检测任务的训练.结果 在9个数据集上的对比实验表明,引入小样本学习方法能有效提升RGB-D显著性物体检测的性能.此外,对不同小样本学习方法在不同的RGB-D显著性物体检测模型下(包括典型的中期融合模型和后期融合模型)进行了对比研究,并进行相关分析与讨论.结论 本文尝试将小样本学习方法用于RGB-D显著性物体检测,探究并利用两种不同小样本学习方法迁移额外的RGB图像知识,通过大量实验验证了引入小样本学习来提升RGB-D显著性物体检测性能的可行性和有效性,对后续将小样本学习引入其他多模态检测任务也提供了一定的启示.
RGB-D salient object detection of using few-shot learning

何静、傅可人

展开 >

四川大学视觉合成图形图像技术国防重点学科实验室,成都 610065

四川大学计算机学院,成都 610065

多模态检测 RGB-D显著性检测 小样本学习 多任务学习 深度估计

62176169617030772020CDLZ-10

2022

中国图象图形学报
中国科学院遥感应用研究所,中国图象图形学学会 ,北京应用物理与计算数学研究所

中国图象图形学报

CSTPCDCSCD北大核心
影响因子:1.111
ISSN:1006-8961
年,卷(期):2022.27(10)
  • 3