国家学术搜索
登录
注册
中文
EN
首页
|
多监督损失函数光滑化图像超分辨率重建
多监督损失函数光滑化图像超分辨率重建
引用
认领
扫码查看
点击上方二维码区域,可以放大扫码查看
原文链接
NETL
NSTL
万方数据
维普
中文摘要:
目的 将低分辨率(low-resolution,LR)图像映射到高分辨率(high-resolution,HR)图像是典型的不适定恢复问题,即输出的HR图像和输入的LR图像之间的映射是多对一的,这意味着仅通过增加网络深度来确定HR图像与LR图像之间的特定映射关系是非常困难的.针对该问题,本文提出一种基于多监督光滑化损失函数的图像超分辨率方法.方法 该方法主体由LR图像上采样通道和HR图像下采样通道两部分组成.各通道分为两个阶段,每个阶段均包括浅层特征提取模块、基于迭代采样错误反馈机制的采样模块、全局特征融合模块和图像重建模块.将LR图像上采样通道第1阶段结果与HR图像下采样通道第1阶段结果对比,然后将HR原图像和HR图像下采样通道第2阶段结果作为约束构成多监督,使映射函数空间尽可能精确,并将多监督损失函数光滑化保证梯度在全局范围内传递.结果 在基准测试集Set5、Set14、BSD100(Berkeley segmentation dataset)、Urban100(urban scenes dataset)、Manga109(109 manga volumes dataset)数据集上进行测试,并与Bicubic、SRCNN(super-resolution con-volutional neural network)、FSRCNN(fast super-resolution convolutional neural network)、LapSRN(Laplacian pyramid super-resolution network)、VDSR(very deep super-resolution convolutional networks)、DBPN(deep back-projection net-works for super-resolution)和DRN(dual regression networks)等方法的实验结果进行对比.当放大因子为4时,本文算法的峰值信噪比分别为32.29 dB、28.85 dB、27.61 dB、26.16 dB和30.87 dB;在重建图像的可视化分析方面,本文算法相较于对比算法具有更加丰富的纹理和清晰的轮廓.结论 实验结果表明,基于多监督光滑化损失函数方法的图像重建结果与其他超分辨率主流算法相比,在重建图像质量和高频细节处理方面均有所提高.
外文标题:
Multi-supervision loss function based smoothed super-resolution image reconstruction
收起全部
展开查看外文信息
作者:
孟志青、张晶、邱健数
展开 >
作者单位:
浙江工业大学管理学院,杭州 310023
关键词:
超分辨率重建
迭代采样
多监督
映射空间
光滑化损失函数
基金:
项目编号:
11871434
出版年:
2022
中国图象图形学报
中国科学院遥感应用研究所,中国图象图形学学会 ,北京应用物理与计算数学研究所
中国图象图形学报
CSTPCD
CSCD
北大核心
影响因子:
1.111
ISSN:
1006-8961
年,卷(期):
2022.
27
(10)
参考文献量
2